Log in

A Facile Synthesis of Pd–C3N4@Titanate Nanotube Catalyst: Highly Efficient in Mizoroki–Heck, Suzuki–Miyaura C–C Couplings

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A Pd–C3N4@titanate nanotube (Pd–C3N4@TNT) catalyst workable in water medium, robust against leaching and agglomeration was prepared in a facile synthetic procedure using quite common chemicals such as TiO2 powder, urea and palladium acetate. The Pd–C3N4@TNT catalyst has been characterized by BET surface area and pore size distribution, X-ray diffraction, solid-state 13C NMR spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. The Pd–C3N4@TNT is a green catalyst for the Miziroki–Heck and Suzuki–Miyaura C–C coupling reactions in water medium with high efficiency (˃ 99% product yields) due to atomic level immobilization of Pd in C3N4 networked titanate nanotubes. Pd–C3N4@TNT is robust against leaching and agglomeration due to stable and furthermore it is recyclable and usable at least for five repeated cycles. The use of water as solvent, absence of leaching and agglomeration, recyclability and reusability ascertains the greenness of Pd–C3N4@TNT) catalyst and process.

Graphic Abstract

Novel Pd–C3N4@titanate nanotube catalyst prepared from bulk TiO2 and urea by simple hydrothermal and thermal pyrolysis followed by immobilization of Pd is active and selective for Mizoroki–Heck, Suzuki–Miyaura C–C couplings in water medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TNT:

Titanate nanotubes

H-TNT:

Hydrogenated titanate nanotubes

GVL:

Gamma-Valerolactone

DCM:

Dichloromethane

GC:

Gas chromatography

GC-MS:

Chromatography–mass spectrometry

References

  1. Lewis LN (1993) Chem Rev 93:2693–2730

    CAS  Google Scholar 

  2. Roucoux A, Schulz J, Patin H (2002) Catalysts Chem Rev 102:3757–3778

    CAS  PubMed  Google Scholar 

  3. Turner V, Golovko B, Vaughan OP, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BF, Lambert RM (2008) Nature 454:981–983

    CAS  PubMed  Google Scholar 

  4. Bennur TH, Ramani A, Bal R, Chanda BM, Sivasanker S (2002) Catal Commun 3:493–496

    CAS  Google Scholar 

  5. Zhao F, Bhanage BM, Shirai M, Arai M (2000) Chem Eur J 6:843–848

    CAS  PubMed  Google Scholar 

  6. Zhao F, Murakami K, Shirai M, Arai M (2000) J Catal 194:479–483

    CAS  Google Scholar 

  7. Köhler K, Heidenreich RG, Krauter JGE, Pietsch J (2002) Chem Eur J 3:622–631

    Google Scholar 

  8. Tromp M, Sietsma JRA, van Bokhoven JA, van Strijdonck GPFRJ, van Haaren AMJ, van der Eerden PWN, van Leeuwen M, Koningsberger DC (2003) Chem Commun 128–129

  9. Iwasawa T, Tokunaga M, Obora Y, Tsuji Y (2004) J Am Chem Soc 126:6554–6555

    CAS  PubMed  Google Scholar 

  10. Crevoisier M, Barle EL, Flueckiger A, Dolan DG, Ovais M, Walsh A (2016) Pharm Dev Technol 1:52–56

    Google Scholar 

  11. Veisi H, Mirzaee N (2018) Appl Organomet Chem 32:e4067

    Google Scholar 

  12. Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Science 321:1331–1335

    CAS  PubMed  Google Scholar 

  13. Joo SH, Park JY, Tsung CK, Yamada Y, Yang P, Somorjai GA (2008) Nat Mater 8:126–131

    PubMed  Google Scholar 

  14. Molnar A (2011) Chem Rev 111:2251–2320

    CAS  PubMed  Google Scholar 

  15. Wang GH, Hilgert J, Richter FH, Wang F, Bongard HJ, Spliethoff B, Weidenthaler C, Schuth F (2014) Nat Mater 13:293–300

    PubMed  Google Scholar 

  16. Sadjadi S, Heravi MM, Malmir M (2018) Carbohydr Polym 186:25–34

    CAS  PubMed  Google Scholar 

  17. Martínez-Klimov ME, Hernandez-Hipólito P, Klimova TE, Solís-Casados DA, Martínez-García M (2016) J Catal 342:138–150

    Google Scholar 

  18. Jeong U, Teng X, Wang Y, Yang H, **a Y (2007) Adv Mater 19:33–60

    CAS  Google Scholar 

  19. Fei X, Kong W, Chen X, Jiang X, Shao Z, Lee JY (2017) ACS Catal 7:2412–2418

    CAS  Google Scholar 

  20. Puthiaraj P, Pitchumani K (2014) Green Chem 16:4223–4233

    CAS  Google Scholar 

  21. Mitoraj D, Kisch H (2008) Angew Chem Int Ed 47:9975–9978

    CAS  Google Scholar 

  22. Liu J, Zhang T, Wang Z, Dawson G, Chen W (2011) J Mater Chem 21:14398

    CAS  Google Scholar 

  23. Mitoraj D, Kisch H (2010) Chem Eur J 16:261–269

    CAS  PubMed  Google Scholar 

  24. Strappaveccia G, Ismalaj E, Petrucci C, Lanari D, Marrocchi A, Drees M, Facchetti A, Vaccaro L (2015) Green Chem 17:365–372

    CAS  Google Scholar 

  25. Niu L, Shao M, Wang S, Lu L, Gao H, Wang J (2008) J Mater Sci 43:1510–1514

    CAS  Google Scholar 

  26. Holst JR, Gillan EG (2008) J Am Chem Soc 13:7373–7379

    Google Scholar 

  27. Kailasam K, Ep** JD, Thomas A, Losse S, Junge H (2011) Energy Environ Sci 4:4668–4674

    CAS  Google Scholar 

  28. Sun J, Zhang J, Zhang M, Antonietti M, Fu X, Wang X (2012) Nat Commun 3:1139

    Google Scholar 

  29. Makowski SJ, Kostler P, Schnick W (2012) Chem Eur J 18:3248–3257

    CAS  PubMed  Google Scholar 

  30. Gao H, Yan S, Wang J, Zou Z (2014) Dalton Trans 43:8178

    CAS  PubMed  Google Scholar 

  31. Homas TA, Fischer A, Goettmann F, Antonietti MJ, Muller O, Schloglb R, Carlssonc JM (2008) J Mater Chem 18:4893

    Google Scholar 

  32. Cui YJ, Ding Z, Fu X, Wang XC (2012) Angew Chem 124:11984

    Google Scholar 

  33. Zhu B, **a P, Ho W, Yu J (2015) Appl Surf Sci 344:188–195

    CAS  Google Scholar 

  34. de Vries JG (2006) Dalton Trans 421

  35. Köhler K, Heidenreich RG, Krauter JGE, Pietsch J (2002) Chem Eur J 8:622

    PubMed  Google Scholar 

  36. Choghamarani AG, Derakhshan AA, Hajjami M, Rajabi L (2017) Catal Lett 147:110–127

    Google Scholar 

  37. Arsalani N, Akbari A, Amini M, Jabbari E, Gautam S, Chae KH (2017) Catal Lett 147:1086–1094

    CAS  Google Scholar 

  38. Razavi N, Akhlaghinia B, Jahanshahi R (2017) Catal Lett 147:360

    CAS  Google Scholar 

  39. Tahmasbi B, Ghorbani-Choghamarani A (2017) Catal Lett 147:649

    CAS  Google Scholar 

  40. Zhao X, Zhang J, Zhao Y, Li X (2015) Catal Lett 145:2010–2019

    CAS  Google Scholar 

  41. Tanhaei M, Mahjoub A, Nejat R (2018) Catal Lett 148:1549–1561

    CAS  Google Scholar 

  42. Nuri A, Vucetic N, Smått JH, Mansoori Y, Mikkola JP, Murzin YD (2019) Catal Lett 149:1941–1951

    CAS  Google Scholar 

  43. Zolfigol MA, Azadbakht T, Khakyzadeh V, Nejatyami R, Perrin D (2014) RSC Adv 4:40036

    CAS  Google Scholar 

  44. Rostamnia S, Liu X, Zheng D (2014) J Colloid Interface Sci 86–91

Download references

Acknowledgements

The author VVRK thanks Council of Scientific Industrial Research (CSIR), New Delhi, India for award of Fellowship. Manuscript Communication Number: IICT/Pubs./2019/215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Raju Burri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 549 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velpula, V.R.K., Ketike, T., Paleti, G. et al. A Facile Synthesis of Pd–C3N4@Titanate Nanotube Catalyst: Highly Efficient in Mizoroki–Heck, Suzuki–Miyaura C–C Couplings. Catal Lett 150, 95–105 (2020). https://doi.org/10.1007/s10562-019-02955-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02955-9

Keywords

Navigation