Log in

Selective Hydrogenation of CO2 to Formic Acid over Alumina-Supported Ru Nanoparticles with Multifunctional Ionic Liquid

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ethylene glycol reduction method was used to prepare alumina supported Ru nanoparticles with different concentrations. All the synthesized materials were examined by different analytical techniques like XRD, TEM, EDX, H2-chemisorption, XPS and H2-TPD analysis. The performance of all the well synthesized Ru@Al2O3-x (x = 2–10 Ru wt%) catalysts were tested for CO2 hydrogenation reaction with or without ionic liquid medium. The influence of the physiochemical properties of Ru@Al2O3-x (x = 2–10 Ru wt%) catalysts was clearly observed during the catalysis CO2 hydrogenation reaction. The maximum catalytic activity was recorded with Ru@Al2O3-2 catalyst in [DAMI][CF3CF2CF2CF2SO3] ionic liquid. In this system, ionic liquid was noted as catalyst stabilizer and shifted the chemical equilibrium of CO2 hydrogenation reaction towards formic acid synthesis followed by the formation of intermediate carbonate. The Ru@Al2O3-2 catalyst in [DAMI][CF3CF2CF2CF2SO3] ionic liquid gave the best result in terms of formic acid synthesis and catalyst recycling (8 runs).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dhakshinamoorthy A, Navalon S, Alvaro M, Garcia H (2012) Metal nanoparticles as heterogeneous fenton catalysts. Chemsuschem 5:46–64

    Article  CAS  PubMed  Google Scholar 

  2. Kalidindi SB, Jagirdar BR (2012) Nanocatalysis and prospects of green chemistry. Chemsuschem 5:65–75

    Article  CAS  PubMed  Google Scholar 

  3. Fan J, Gao Y (2006) Nanoparticle-supported catalysts and catalytic reactions—a mini-review. J Exp Nanosci 1:457–475

    Article  CAS  Google Scholar 

  4. Munnik P, de Jongh PE, de Jong KP (2015) Recent developments in the synthesis of supported catalysts. Chem Rev 115:6687–6718

    Article  CAS  PubMed  Google Scholar 

  5. Lambert S, Cellier C, Grange P et al (2004) Synthesis of Pd/SiO2, Ag/SiO2, and Cu/SiO2 cogelled xerogel catalysts: study of metal dispersion and catalytic activity. J Catal 221:335–346

    Article  CAS  Google Scholar 

  6. Mokrane T, Boudjahem A-G, Bettahar M (2016) Benzene hydrogenation over alumina-supported nickel nanoparticles prepared by polyol method. RSC Adv 6:59858–59864

    Article  CAS  Google Scholar 

  7. Boudjahem A-G, Redjel A, Mokrane T (2012) Preparation, characterization and performance of Pd/SiO2 catalyst for benzene catalytic hydrogenation. J Ind Eng Chem 18(303–308):8

    Google Scholar 

  8. Hu H, **n JH, Hu H et al (2015) Synthesis and stabilization of metal nanocatalysts for reduction reactions—a review. J Mater Chem A 3:11157–11182

    Article  CAS  Google Scholar 

  9. Liu L, Corma A (2018) Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 118:4981–5079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boudjahem A-G, Mokrane T, Redjel A, Bettahar MM (2010) Silica supported nanopalladium prepared by hydrazine reduction. Compt Rendus Chim 13:1433–1439

    Article  CAS  Google Scholar 

  11. Penzien J, Haeßner C, Jentys A et al (2004) Heterogeneous catalysts for hydroamination reactions: structure–activity relationship. J Catal 221:302–312

    Article  CAS  Google Scholar 

  12. Li Y, Bastakoti BP, Abe H et al (2015) A dual soft-template synthesis of hollow mesoporous silica spheres decorated with Pt nanoparticles as a CO oxidation catalyst. RSC Adv 5:97928–97933

    Article  CAS  Google Scholar 

  13. Panpranot J, Tangjitwattakorn O, Praserthdam P, Goodwin JG (2005) Effects of Pd precursors on the catalytic activity and deactivation of silica-supported Pd catalysts in liquid phase hydrogenation. Appl Catal A Gen 292:322–327

    Article  CAS  Google Scholar 

  14. Gaillard F, Li X, Uray M, Vernoux P (2004) Electrochemical promotion of propene combustion in air excess on perovskite catalyst. Catal Lett 96:177–183

    Article  CAS  Google Scholar 

  15. Nagai M, Huang J, Cui D et al (2017) Two-step reprecipitation method with size and zeta potential controllability for synthesizing semiconducting polymer nanoparticles. Colloid Polym Sci 295:1153–1164

    Article  CAS  Google Scholar 

  16. Renna LA, Boyle CJ, Gehan TS, Venkataraman D (2015) Polymer nanoparticle assemblies: a versatile route to functional mesostructures. Macromolecules 48:6353–6368

    Article  CAS  Google Scholar 

  17. Wang Z, Huang J, Huang W et al (2019) Agglomeration controllable reprecipitation method using solvent mixture for synthesizing conductive polymer nanoparticles. Colloid Polym Sci 297:69–76

    Article  CAS  Google Scholar 

  18. Potai R, Traiphol R (2013) Controlling chain organization and photophysical properties of conjugated polymer nanoparticles prepared by reprecipitation method: the effect of initial solvent. J Colloid Interface Sci 403:58–66

    Article  CAS  PubMed  Google Scholar 

  19. Shenhar R, Norsten TB, Rotello VM (2005) Polymer-mediated nanoparticle assembly: structural control and applications. Adv Mater 17:657–669

    Article  CAS  Google Scholar 

  20. Jeevanandam J, Barhoum A, Chan YC, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gawande MB, Zboril R, Malgras V, Yamauchi Y (2015) Integrated nanocatalysts: a unique class of heterogeneous catalysts. J Mater Chem A 3:8241–8245

    Article  CAS  Google Scholar 

  22. Polshettiwar V, Varma RS (2010) Green chemistry by nano-catalysis. Green Chem 12:743–754

    Article  CAS  Google Scholar 

  23. Mondal J, Biswas A, Chiba S, Zhao Y (2015) Cu0 nanoparticles deposited on nanoporous polymers: a recyclable heterogeneous nanocatalyst for Ullmann coupling of aryl halides with amines in water. Sci Rep 5:8294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chaturvedi S, Dave PN, Shah NK (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16:307–325

    Article  CAS  Google Scholar 

  25. Jiang H-L, Xu Q (2011) Porous metal–organic frameworks as platforms for functional applications. Chem Commun 47:3351–3370

    Article  CAS  Google Scholar 

  26. Mohamedali M, Henni A, Ibrahim H (2018) Recent advances in supported metal catalysts for syngas production from methane. ChemEngineering 2:1–23

    Article  CAS  Google Scholar 

  27. Trueba M, Trasatti SP (2005) γ-Alumina as a support for catalysts: a review of fundamental aspects. Eur J Inorg Chem 17:3393–3403

    Article  CAS  Google Scholar 

  28. Singh V, Sapehiyia V, Srivastava V, Kaur S (2006) ZrO2-pillared clay: an efficient catalyst for solventless synthesis of biologically active multifunctional dihydropyrimidinones. Catal Commun 7:571–578

    Article  CAS  Google Scholar 

  29. Upadhyay PR, Srivastava V (2016) Silica tethered ruthenium catalyst for the hydrogenation of CO2 gas. Lett Org Chem 13:380–387

    Article  CAS  Google Scholar 

  30. Upadhyay PR, Srivastava V (2016) Heterogeneous silica tethered ruthenium catalysts for carbon sequestration reaction. Catal Lett 146:1478–1486

    Article  CAS  Google Scholar 

  31. Upadhyay PR, Srivastava V (2016) Titanium dioxide supported ruthenium nanoparticles for carbon sequestration reaction. Nanosystems 7:513–517

    CAS  Google Scholar 

  32. Ghiaci M, Valikhani D, Sadeghi Z (2012) Synthesis and characterization of silica-supported Pd nanoparticles and its application in the Heck reaction. Chin Chem Lett 23:887–890

    Article  CAS  Google Scholar 

  33. Srivastava V (2017) Mesoporous silica supported Ru nanoparticles for hydrogenation of CO2 molecule. Lett Org Chem 14:74–79

    Article  CAS  Google Scholar 

  34. Srivastava V (2017) Active ruthenium(0) nanoparticles catalyzed wittig-type olefination reaction. Catal Lett 147:693–703

    Article  CAS  Google Scholar 

  35. Srivastava V (2016) Active heterogeneous Ru nanocatalysts for CO2 hydrogenation reaction. Catal Letters 146:2630–2640

    Article  CAS  Google Scholar 

  36. Srivastava V (2014) Ru-exchanged MMT clay with functionalized ionic liquid for selective hydrogenation of CO2 to formic acid. Catal Lett 144:2221–2226

    Article  CAS  Google Scholar 

  37. Balu AM, Pineda A, Campelo JM, Gai PL, Luque R, Romero AA (2010) Fe/Al synergy in Fe2O3 nanoparticles supported on porous aluminosilicate materials: excelling activities in oxidation reactions. Chem Commun 46:7825–7827

    Article  CAS  Google Scholar 

  38. Upadhyay P, Srivastava V (2016) Synthesis of monometallic Ru/TiO2 catalysts and selective hydrogenation of CO2 to formic acid in ionic liquid. Catal Letters 146:12–21

    Article  CAS  Google Scholar 

  39. Ramprakash Upadhyay P, Srivastava V (2016) Selective hydrogenation of CO to methane over TiO2-supported ruthenium nanoparticles. In: Proceedings on materials today. pp 4093–4096

  40. Upadhyay PR, Srivastava V (2016) Selective hydrogenation of CO2 gas to formic acid over nanostructured Ru-TiO2 catalysts. RSC Adv 6:42297–42306

    Article  CAS  Google Scholar 

  41. Bulushev DA, Ross JRH (2018) Towards sustainable production of formic acid. Chemsuschem 11:821–836

    Article  CAS  PubMed  Google Scholar 

  42. Reymond H, Corral-Pérez JJ, Urakawa A, Rudolf von Rohr P (2018) Towards a continuous formic acid synthesis: a two-step carbon dioxide hydrogenation in flow. React Chem Eng 3:912–919

    Article  CAS  Google Scholar 

  43. Bulushev DA, Ross JRH (2018) Heterogeneous catalysts for hydrogenation of CO2 and bicarbonates to formic acid and formates. Catal Rev 60:566–593

    Article  CAS  Google Scholar 

  44. van Putten R, Wissink T, Swinkels T, Pidko EA (2019) Fuelling the hydrogen economy: scale-up of an integrated formic acid-to-power system. Int J Hydr Energy 56(26):7531–7534

    Google Scholar 

  45. Mellmann D, Sponholz P, Junge H, Beller M (2016) Formic acid as a hydrogen storage material—development of homogeneous catalysts for selective hydrogen release. Chem Soc Rev 45:3954–3988

    Article  CAS  PubMed  Google Scholar 

  46. Álvarez A, Bansode A, Urakawa A et al (2017) Challenges in the greener production of formates/formic acid, methanol, and dme by heterogeneously catalyzed CO2 hydrogenation processes. Chem Rev 117:9804–9838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weilhard A, Qadir MI, Sans V, Dupont J (2018) Selective CO2 hydrogenation to formic acid with multifunctional ionic liquids. ACS Catal 8:1628–1634

    Article  CAS  Google Scholar 

  48. Saeidi S, Amin S, Rahimpour MR (2014) Hydrogenation of CO2 to value-added products—a review and potential future developments. J CO2 Util 5:66–81

    Article  CAS  Google Scholar 

  49. Upadhyay P, Srivastava V (2015) Ruthenium nanoparticle-intercalated montmorillonite clay for solvent-free alkene hydrogenation reaction. RSC Adv 5:740–745

    Article  CAS  Google Scholar 

  50. Upadhyay PR, Srivastava V (2017) Ionic liquid mediated in situ synthesis of Ru nanoparticles for CO2 hydrogenation reaction. Catal Letters 147:1051–1060

    Article  CAS  Google Scholar 

  51. Srivastava VK, Eilbracht P (2009) Ruthenium carbonyl-complex catalyzed hydroaminomethylation of olefins with carbon dioxide and amines. Catal Commun 10:1791–1795

    Article  CAS  Google Scholar 

  52. Brennecke JF, Gurkan BE (2010) Ionic liquids for CO2 capture and emission reduction. J Phys Chem Lett 1:3459–3464

    Article  CAS  Google Scholar 

  53. Bates ED, Mayton RD, Ntai I, Davis JH (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927

    Article  CAS  PubMed  Google Scholar 

  54. Dai W-L, Luo S-L, Yin S-F, Au C-T (2009) The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts. Appl Catal A Gen 366:2–12

    Article  CAS  Google Scholar 

  55. Srivastava V (2014) In situ generation of Ru nanoparticles to catalyze CO2 hydrogenation to formic acid. Catal Letters 144:1745–1750

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 292 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, P., Upadhyay, P.R. & Srivastava, V. Selective Hydrogenation of CO2 to Formic Acid over Alumina-Supported Ru Nanoparticles with Multifunctional Ionic Liquid. Catal Lett 149, 1464–1475 (2019). https://doi.org/10.1007/s10562-019-02773-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02773-z

Keywords

Navigation