Log in

Promoting Effect of Boron on the Stability and Activity of Ni/Mo2C Catalyst for Hydrogenation of Alkali Lignin

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Different amount of boron-modified Ni/Mo2C were synthesized, characterized and tested during the hydrogenation of alkali lignin, to evaluate the effect of boron on the Ni promoted behavior. xB–Ni/Mo2C (x = 0.5, 1, 3, 5) is found to enhance the lignin conversion and bio-oil yield at the same time, and the highest bio-oil yield was obtained with 1B–Ni/Mo2C (63.8%), under the optimum reaction condition (2 MPa H2, 290 °C and 2 h). Characteristic results of BET method, ICP-OES, XRD, Raman, SEM, TEM, XPS, H2-TPR and NH3/CO2/CO-TPD indicate the improved catalytic performance comes from strong interaction between boron and nickel species, which results in improved surace area, highly dispersed Ni particles, increased acidic sites, thus favors cleavage of the C–O and C–C bonds. A possible reaction mechanism was also present based on the catalytic system.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Huo W, Wenzhi L, Minjian Z, Wei F, Hou-Min C, Hasan J (2014) Catal Lett 144:1159–1163

    Article  CAS  Google Scholar 

  2. Aqsha A, Lakshmi K, Nader M (2015) Catal Lett 145:1351–1363

    Article  CAS  Google Scholar 

  3. Kang K, Shakouri M, Azargohar R, Dalai AK, Wang H (2016) Catal Lett 146:2596–2605

    Article  CAS  Google Scholar 

  4. Yang L, Li Y, Savage PE (2014) Ind Eng Chem Res 53:2633–2639

    Article  CAS  Google Scholar 

  5. Holladay JE, White JF, Bozell JJ, Johnson D (2007) Top value-added chemicals from biomass—volume ii—results of screening for potential candidates from biorefinery lignin, Pacific Northwest National Laboratory (PNNL), Richland

    Book  Google Scholar 

  6. Gosselink RJA, De Jong E, Guran B, Abächerli A (2004) Ind Crops Prod 20:121–129

    Article  CAS  Google Scholar 

  7. Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Chem Rev 115:11559–11624

    Article  CAS  PubMed  Google Scholar 

  8. Alonso DM, Wettstein SG, Dumesic JA (2012) Chem Soc Rev 41:8075–8098

    Article  CAS  PubMed  Google Scholar 

  9. Tian Q, Li N, Liu J, Wang M, Deng J, Zhou J, Ma Q (2014) Energy Fuels 29:255–261

    Article  CAS  Google Scholar 

  10. Alpert SB, Shuman SC (1970) Canadian Patent 851709

  11. Jongerius AL, Jastrzebski R, Bruijnincx PC, Weckhuysen BM (2012) J Catal 285:315–323

    Article  CAS  Google Scholar 

  12. Lin YC, Li CL, Wan HP, Lee HT, Liu CF (2011) Energy Fuels 25:890–896

    Article  CAS  Google Scholar 

  13. Chen CJ (2015) 24th North American Catalysis Society Meeting (NAM24), Pittsburgh

  14. Aegerter PA, Quigley WW, Simpson GJ, Ziegler DD, Logan JW, McCrea KR, Bussell ME (1996) J Catal 164:109–121

    Article  CAS  Google Scholar 

  15. Jongerius AL, Bruijnincx PC, Weckhuysen BM (2013) Green Chem 15:3049–3056

    Article  CAS  Google Scholar 

  16. Wang YY, Li LL, Jiang H (2016) Green Chem 18:4032–4041

    Article  CAS  Google Scholar 

  17. Szeptycka B, Gajewska-Midzialek A, Babul T (2016) J Mater Eng Perform 25:1–5

    Article  CAS  Google Scholar 

  18. Calderón JA, Henao JE, Gómez MA (2014) Electrochim Acta 124:190–198

    Article  CAS  Google Scholar 

  19. He Z, Lin H, He P, Yuan Y (2011) J Catal 277:54–63

    Article  CAS  Google Scholar 

  20. Xu J, Chen L, Tan KF, Borgna A, Saeys M (2009) J Catal 261:158–165

    Article  CAS  Google Scholar 

  21. Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA (2009) Angew Chem Int Ed 121:4047–4050

    Article  Google Scholar 

  22. Liu X, Smith KJ (2008) Appl Catal A 335:230–240

    Article  CAS  Google Scholar 

  23. Li N, Wei L, Chen L, Liu J, Zhang L, Zheng Y, Zhou J (2016) Fuel 185:532–540

    Article  CAS  Google Scholar 

  24. Ma R, Hao W, Ma X, Tian Y, Li Y (2014) Angew Chem Int Ed 53:7310–7315

    Article  CAS  Google Scholar 

  25. Rezzoug SA, Capart R (2003) Energy Convers Manag 44:781–792

    Article  CAS  Google Scholar 

  26. Lee CR, Yoon JS, Suh YW, Choi JW, Ha JM, Suh DJ, Park YK (2012) Catal Commun 17:54–58

    Article  CAS  Google Scholar 

  27. Chen MY, Huang YB, Pang H, Liu XX, Fu Y (2015) Green Chem 17:1710–1717

    Article  CAS  Google Scholar 

  28. Palm R, Tallo I, Romann T, Kurig H (2015) Microporous Mesoporous Mater 218:167–173

    Article  CAS  Google Scholar 

  29. Shinde DB, Pillai VK (2012) Chem Eur J 18:12522–12528

    Article  CAS  PubMed  Google Scholar 

  30. Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva SRP, Ehrhardt H, Silva SRP (1996) J Appl Phys 80:440–447

    Article  CAS  Google Scholar 

  31. Urbonaite S, Hälldahl L, Svensson G (2008) Carbon 46:1942–1947

    Article  CAS  Google Scholar 

  32. Jiang B, Tian C, Zhou W, Wang J, **e Y, Pan Q, Ren Z, Dong Y, Fu D, Han J, Fu H (2011) Chem Eur J 17:8379–8387

    Article  CAS  PubMed  Google Scholar 

  33. Vidano RP, Fischbach DB, Willis LJ, Loehr TM (1981) Solid State Commun 39:341–344

    Article  CAS  Google Scholar 

  34. Chen G, Desinan S, Rosei R, Rosei F, Ma D (2012) Chem Eur J 18:7925–7930

    Article  CAS  PubMed  Google Scholar 

  35. Ferrari AC (2007) Solid State Commun 143:47–57

    Article  CAS  Google Scholar 

  36. Dresselhaus MS, Dresselhaus G, Hofmann M (2007) Vib Spectrosc 45:71–81

    Article  CAS  Google Scholar 

  37. Jänes A, Thomberg T, Kurig H, Lust E (2009) Carbon 47:23–29

    Article  CAS  Google Scholar 

  38. Tallant DR, Aselage TL, Campbell AN, Emin D (1989) Phys Rev B 40:5649

    Article  CAS  Google Scholar 

  39. Jung KW, Hwang MJ, Jeong TU, Ahn KH (2015) Bioresour Technol 191:342–345

    Article  CAS  PubMed  Google Scholar 

  40. Wang WL, Ren XY, Chang JM, Cai LP, Shi SQ (2015) Fuel Process Technol 138:605–611

    Article  CAS  Google Scholar 

  41. Wang G, Schaidle JA, Katz MB, Li Y, Pan X, Thompson LT (2013) J Catal 304:92–99

    Article  CAS  Google Scholar 

  42. Oshikawa K, Nagai M, Omi S (2001) J Phys Chem B 105:9124–9131

    Article  CAS  Google Scholar 

  43. Kuhlmann A, Roessner F, Schwieger W, Gravenhorst O, Selvam T (2004) Catal Today 97:303–306

    Article  CAS  Google Scholar 

  44. Flego C, Parker WO Jr (1999) Appl Catal A 185:137–152

    Article  CAS  Google Scholar 

  45. Kijeński J, Baiker A (1989) J Mol Catal 49:235–259

    Article  Google Scholar 

  46. Ni J, Chen L, Lin J, Kawi S (2012) Nano Energy 1:674–686

    Article  CAS  Google Scholar 

  47. He L, Qin Y, Lou H, Chen P (2015) RSC Adv 5:43141–43147

    Article  CAS  Google Scholar 

  48. Sullivan MM, Held JT, Bhan A (2015) J Catal 326:82–91

    Article  CAS  Google Scholar 

  49. Hibbitts D, Tan Q, Neurock M (2014) J Catal 315:48–58

    Article  CAS  Google Scholar 

  50. Schaidle JA, Blackburn J, Farberow CA, Nash C, Steirer KX, Clark J, Robichaud DJ, Ruddy DA (2016) ACS Catal 6:1181–1197

    Article  CAS  Google Scholar 

  51. Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD (2011) Appl Catal A 407:1–9

    Article  CAS  Google Scholar 

  52. Gadalla AM, Bower B (1988) Chem Eng Sci 43:3049–3062

    Article  CAS  Google Scholar 

  53. Huang J, Huang T, Chunluan H, Huang W, Ma RX (2012) Adv Mater Res 455:174–179

    Article  CAS  Google Scholar 

  54. Yu ZB, Qiao MH, Li HX, Deng JF (1997) Appl Catal A 163:1–3

    Article  CAS  Google Scholar 

  55. Yu Y, ** G, Wang Y, Guo X (2013) Catal Commun 31:5–10

    Article  CAS  Google Scholar 

  56. Fuggle JC, Hillebrecht FU, Zeller R, Zołnierek Z, Bennett PA, Freiburg C (1983) Phys Rev B 27:2145

    Article  CAS  Google Scholar 

  57. Schreifels JA, Maybury PC, Swartz WE (1980) J Catal 65:195–206

    Article  CAS  Google Scholar 

  58. Grim SO, Matienzo LJ, Swartz WE Jr (1972) J Am Chem Soc 94:5116–5117

    Article  CAS  Google Scholar 

  59. Czekaj I, Loviat F, Raimondi F, Wambach J, Biollaz S, Wokaun A (2007) Appl Catal A 329:68–78

    Article  CAS  Google Scholar 

  60. Shabaker JW, Simonetti DA, Cortright RD, Dumesic JA (2005) J Catal 231:67–76

    Article  CAS  Google Scholar 

  61. Chen X, Li H, Luo H, Qiao M (2002) Appl Catal A 233:13–20

    Article  CAS  Google Scholar 

  62. Luo G, Yan S, Qiao M, Zhuang J, Fan K (2004) Appl Catal A 275:95–102

    Article  CAS  Google Scholar 

  63. Zhao S, Yue H, Zhao Y, Wang B, Geng Y, Lv J, Ma X (2013) J Catal 297:142–150

    Article  CAS  Google Scholar 

  64. Shi C, Zhang A, Li X, Zhang S, Zhu A, Ma Y, Au C (2012) Appl Catal A 431:164–170

    Article  CAS  Google Scholar 

  65. Guangzhou J, Jianhua Z, **uju F, Guida SUN, Junbin GAO (2006) Chin J Catal 27:899–903

    Article  Google Scholar 

  66. Zhang A, Zhu A, Chen B, Zhang S, Au C, Shi C (2011) Catal Commun 12:803–807

    Article  CAS  Google Scholar 

  67. Petrova EM, Shcherban’ NI, Sleptsov VM (1969) Powder Metall Met Ceram 8:523–527

    Article  Google Scholar 

  68. George SM, DeSantolo AM, Hall RB (1985) Surf Sci 159:L425–L432

    Article  Google Scholar 

  69. Fu XJ, Lei YQ, Su HQ (2013) Chin J Catal 34:379–384

    Google Scholar 

  70. Bhaumik SK, Upadhyaya GS, Vaidya ML (1992) Ceram Int 18:327–336

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities of China (No. 3207045403, 3207045409, 3207046414), National Natural Science Foundation of China (No. 21576050 and No. 51602052), Jiangsu Provincial Natural Science Foundation of China (BK20150604) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naixu Li or Jiancheng Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3330 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Bibi, R., Zheng, Y. et al. Promoting Effect of Boron on the Stability and Activity of Ni/Mo2C Catalyst for Hydrogenation of Alkali Lignin. Catal Lett 148, 1856–1869 (2018). https://doi.org/10.1007/s10562-018-2395-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2395-3

Keywords

Navigation