Log in

A First-Principles Study of Oxygen Formation Over NiFe-Layered Double Hydroxides Surface

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The mechanism of the oxygen evolution reaction over NiFe-layered double hydroxides is investigated using first-principles DFT + U calculations. We consider three possible reaction pathways for O2 evolution. Our calculations show that O2 evolution from the OH*–OH* species has high energy barrier and from OOH* species have a little high energy barrier. Finally, we discover that O2 can easily release from OO* species.

Graphical Abstract

The mechanism of oxygen evolution reaction (OER) over NiFe-layered double hydroxides was investigated using DFT + U method by First-principle. The present work considered two possible reaction pathways for O2 evolution. Our calculation suggested that O2 evolution from the OOH* species may be more favorable because of advantages in energy profile, oxygen adsorption, and overall energy barrier. In addition, density of states (DOS) and partial density of states (PDOSs) of NiFe-LDH and Ni(OH)2 showed that NiFe-LDH had a more stronger capability for electron transportation and higher activity than Ni(OH)2. Additionally, it was found that Bader charge of Ni had a large fluctuation in the former elementary steps, while in the later that of Fe had. The research suggested that the transitional metal Fe/Ni-based hydrotalcite was a suitable material for OER, for not only they had great activity and stability, but also they were widely used and comparatively cheap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gray HB (2009) Nat Chem 1:7

    Article  CAS  Google Scholar 

  2. Kudo A, Miseki Y (2009) Soc Rev 38:253

    Article  CAS  Google Scholar 

  3. Lu YC, Xu Z, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y (2010) J Am Chem Soc 132:12170

    Article  CAS  Google Scholar 

  4. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Chem Rev 110:6446

    Article  CAS  Google Scholar 

  5. Cheng F, Chen J (2012) Chem Soc Rev 41:2172

    Article  CAS  Google Scholar 

  6. Liang Y, Li Y, Wang H, Dai H (2013) J Am Chem Soc 135:2013

    Article  CAS  Google Scholar 

  7. Wang H, Dai H (2013) Chem Soc Rev 42:3088

    Article  CAS  Google Scholar 

  8. Hamdani M, Singh RN, Chartier P (2010) Int J Electrochem Sci 5:556

    CAS  Google Scholar 

  9. Oshikiri M, Boero M (2010) J Phys Chem B 110:9188

    Article  Google Scholar 

  10. Yang J, Wang D, Zhou X, Li C (2013) Chem Eur J 19:1320

    Article  CAS  Google Scholar 

  11. Kanan MW, Nocera DG (2008) Science 321:1072

    Article  CAS  Google Scholar 

  12. Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) J Am Chem Soc 135:8452

    Article  CAS  Google Scholar 

  13. Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) J Phys Chem Lett 3:399

    Article  CAS  Google Scholar 

  14. Liu G, Han J, Zhou X, Huang L, Zhang F, Wang X, Ding C, Zheng X, Han H, Li C (2013) J Catal 307:148

    Article  CAS  Google Scholar 

  15. Liu X, Wang F (2012) Coord Chem Rev 256:1115

    Article  CAS  Google Scholar 

  16. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Norskov JK (2007) J Electroanal Chem 607:83

    Article  CAS  Google Scholar 

  17. Fang YH, Liu ZP (2010) J Am Chem Soc 132:18214

    Article  CAS  Google Scholar 

  18. Dincă M, Surendranath Y, Nocera DG (2010) Proc Natl Acad Sci 10:10337

    Article  Google Scholar 

  19. Singh A, Chang SL, Hocking RK, Bach U, Spiccia L (2013) Energy Environ Sci 6:579

    Article  CAS  Google Scholar 

  20. Rahman G, Joo OS (2012) Int J Hydrogen Energy 37:13989

    Article  CAS  Google Scholar 

  21. Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) ar**v preprint ar**v 1303:3308

  22. Kim SJ, Lee Y, Lee DK, Lee JW, Kang J (2014) J Mater Chem A 2:4136

    Article  CAS  Google Scholar 

  23. Zhang Y, Cui B, Zhao C, Lin H, Li J (2013) Phys Chem Chem Phys 15:7363

    Article  CAS  Google Scholar 

  24. Chen X, Fu C, Wang Y, Yang W, Evans DG (2008) Biosens Bioelectron 24:356

    Article  CAS  Google Scholar 

  25. Bolshak E, Abelló S, Montané D (2013) Int J Hydrogen Energy 38:5594

    Article  CAS  Google Scholar 

  26. Sakaebe H, Uchino H, Azuma M, Shikano M, Higuchi S (1998) Solid State Ion 113:35

    Article  Google Scholar 

  27. Bajdich M, García-Mota M, Vojvodic A, Nørskov JK, Bell AT (2013) J Am Chem Soc 135:13521

    Article  CAS  Google Scholar 

  28. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  29. Aguilera I, Palacios P, Wahnón P (2010) Sol Energy Mater Sol Cells 94:1903

    Article  CAS  Google Scholar 

  30. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  31. Cheng MY, Hwang BJ (2007) Nanoscale Res Lett 2:28

    Article  CAS  Google Scholar 

  32. Gao M, Sheng W, Zhuang Z, Fang Q, Gu S, Jiang J, Yan Y (2014) J Am Chem Soc 136:7077

    Article  CAS  Google Scholar 

  33. Man IC, Su HY, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Norskov JK, Rossmeisl J (2011) ChemCatChem 3:1159

    Article  CAS  Google Scholar 

  34. Kanan MW, Yano J, Surendranath Y, Dinca M, Yachandra VK, Nocera DG (2010) J Am Chem Soc 132:13692

    Article  CAS  Google Scholar 

  35. Garcia-Mota M, Bajdich M, Viswanathan V, Vojvodic A, Bell AT, Nørskov JK (2012) J Phys Chem C 116:21077

    Article  CAS  Google Scholar 

  36. Bediako DK, Lassalle-Kaiser B, Surendranath Y, Yano J, Yachandra VK, Nocera DG (2012) J Am Chem Soc 134:6801

    Article  CAS  Google Scholar 

  37. Bediako DK, Surendranath Y, Nocera DG (2013) J Am Chem Soc 135:3662

    Article  CAS  Google Scholar 

  38. McCrory CC, Jung S, Peters JC, Jaramillo TF (2013) J Am Chem Soc 135:16977

    Article  CAS  Google Scholar 

  39. Li YF, Selloni A (2014) ACS Catal 4:1148

    Article  CAS  Google Scholar 

  40. Prevot V, Forano C, Besse JP (2000) J Solid State Chem 153:301

    Article  CAS  Google Scholar 

  41. Crepaldi EL, Valim JB (1998) Quim Nova 21:300

    Article  CAS  Google Scholar 

  42. Oliver-Tolentino MA, Vázquez-Samperio J, Manzo-Robledo A, Gonzá lez-Huerta RDG, Flores-Moreno JL, Ramírez-Rosales D, Guzmán-Vargas A (2014) J Phys Chem C 118:22432

    Article  CAS  Google Scholar 

  43. Lu Z, Xu W, Zhu W, Yang Q, Lei X, Liu J, Li Y, Sun X, Duan X (2014) Chem Commun 50:6479

    Article  CAS  Google Scholar 

  44. Tronto J, Sanchez KC, Crepaldi EL, Naal Z, Klein SI, Valim JB (2004) J Phys Chem Solids 65:493

    Article  CAS  Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  46. Wasileski SA, Janik MJ (2008) Phys Chem Chem Phys 10:3613

    Article  CAS  Google Scholar 

  47. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505

    Article  CAS  Google Scholar 

  48. Wang L, Maxisch T, Ceder G (2006) Phys Rev B 73:195107

    Article  Google Scholar 

  49. Del Arco M, Malet P, Trujillano R, Rives V (1999) Chem Mater 11:624

    Article  Google Scholar 

  50. Abelló S, Bolshak E, Montané D (2013) Appl Catal A Gen 450:261

    Article  Google Scholar 

  51. Costa DG, Rocha AB, Diniz R, Souza WF, Chiaro SSX, Leitão AA (2010) J Phys Chem C 114:14133

    Article  CAS  Google Scholar 

  52. Matsumoto Y, Sato E (1986) Mater Chem Phys 14:397

    Article  CAS  Google Scholar 

  53. Trotochaud L, Young SL, Ranney JK, Boettcher SW (2014) J Am Chem Soc 136:6744

    Article  CAS  Google Scholar 

  54. Garcia-Mota M, Bajdich M, Viswanathan V, Vojvodic A, Bell AT, Nørskov JK (2010) J Phys Chem C 16:21077

    Google Scholar 

  55. Chemelewski WD, Lee HC, Lin JF, Bard AJ, Mullins CB (2014) J Am Chem Soc 136:2843

    Article  CAS  Google Scholar 

  56. Yuan L, Li Z, Yang J, Hou JG (2012) Phys Chem Chem Phys 14:8179

    Article  CAS  Google Scholar 

  57. Zhou C, Zhang Q, Chen L, Han B, Ni G, Wu J, Garg D, Cheng H (2010) J Phys Chem C114:21405

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Foundation of China (21103007), 863 Program (2012AA03A609), by the Youth Education Talent Plan of Bei**g (YETP0510), and by the Fundamental Research Funds for the Central Universities (YS1406). The study was also supported by “CHEMCLOUDCOMPUTING” of Bei**g University of Chemical Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya** Li.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Zhang, P., Kou, Y. et al. A First-Principles Study of Oxygen Formation Over NiFe-Layered Double Hydroxides Surface. Catal Lett 145, 1541–1548 (2015). https://doi.org/10.1007/s10562-015-1561-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1561-0

Keywords

Navigation