Log in

Continuous Hydrogenation of Monovinylacetylene for 1,3-Butadiene Production Catalyzed by Ionic Liquid Stabilized Pd Nanoparticles

  • Published:
Catalysis Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The production of 1,3-butadiene from acetylene includes the dimerization of acetylene and hydrogenation of the dimer. This work investigated the hydrogenation process catalyzed by ionic liquid stabilized Pd nanoparticles. The Pd nanoparticles were dispersed uniformly the in ionic liquid phase by the N-heterocyclic carbene species adsorbed on the surface of the nanoparticles. However, during the reaction, the N-heterocyclic carbene layer was replaced by a hydrophobic byproduct, which caused the Pd nanoparticles to separate from the [BMIm][BF4] phase and the loss of the catalyst from the reaction phase. To solve this, n-heptane was introduced into the reaction system to re-disperse the Pd nanoparticles in n-heptane, and due to this, the Pd nanoparticles maintained a high catalytic activity for a long term.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chae HJ, Kim TW, Moon YK, Kim HK, Jeong KE, Kim CU, Jeong SY (2014) Appl Catal B-Environ 150–151:596–604

    Article  Google Scholar 

  2. Yan W, Kouk QY, Luo J, Liu Y, Borgna A (2014) Catal Commun 46:208–212

    Article  CAS  Google Scholar 

  3. Lewandowski M, Babu GS, VezzOli M, Jones MD, Owen RE, Mattia D, Plucinski P, Mikolajska E, Ochenduszko A, Apperley DC (2014) Catal Commun 49:25–28

    Article  CAS  Google Scholar 

  4. Trotuş IT, Zimmermann T, Schüth F (2014) Chem Rev 114(3):1761–1782

    Article  Google Scholar 

  5. Liu JG, Zuo YZ, Han MH, Wang ZW, Wang DZ (2012) J Nat Gas Chem 21(5):495–500

    Article  Google Scholar 

  6. Liu JG, Zuo YZ, Han MH, Wang ZW (2013) J Chem Technol Biotechnol 88(3):408–414

    Article  CAS  Google Scholar 

  7. Liu JG, Han MH, Wang ZW (2013) J Energy Chem 22(4):599–604

    Article  CAS  Google Scholar 

  8. Masashi A, Higashio Y (1984) US Patent, 4469907, 1984

  9. Setiawan I, Cavell KJ (1995) Appl Catal A-Gen 131(2):225–241

    Article  CAS  Google Scholar 

  10. Molnár Á, Sárkány A, Mónika V (2001) J Mol Catal A-Chem 173(1–2):185–221

    Article  Google Scholar 

  11. Bridier B, Karhánek D, Pérez-Ramírez J, López N (2012) ChemCatChem 4(9):1420–1427

    Article  CAS  Google Scholar 

  12. Crespo-Quesada M, Cardenas-Lizana F, Dessimoz AL, Kiwi-Minsker L (2012) ACS Catal 2(8):1773–1786

    Article  CAS  Google Scholar 

  13. Teschner D, Vass E, Havecker M, Zafeiratos S, Schnorch P, Sauer H, Knop-Gericke A, Schloegl R, Chamam M, Wootsch A (2006) J Catal 242(1):26–37

    Article  CAS  Google Scholar 

  14. Umpierre AP, Machado G, Fecher GH, Morais J, Dupont J (2005) Adv Synth Catal 347(10):1404–1412

    Article  CAS  Google Scholar 

  15. Scheeren CW, Machado G, Teixeira SR, Morais J, Domingos JB, Dupont J (2006) J Phys Chem B 110(26):13011–13020

    Article  CAS  Google Scholar 

  16. Beier MJ, Andanson JM, Baiker A (2012) ACS Catal 2(12):2587–2595

    Article  CAS  Google Scholar 

  17. Banerjee A, Theron R, Scott RWJ (2012) ChemSusChem 5(1):109–116

    Article  CAS  Google Scholar 

  18. Hu Y, Yang HM, Zhang YC, Hou ZS, Wang XR, Qiao YX, Li H, Feng B, Huang QF (2009) Catal Commun 10(14):1903–1907

    Article  CAS  Google Scholar 

  19. Zhu WW, Yu YY, Yang HM, Hua L, Qiao YX, Zhao XG, Hou ZS (2013) Chem Eur J 19(6):2059–2066

    Article  CAS  Google Scholar 

  20. Zeng Y, Wang YH, Xu YC, Song Y, Jiang JY, ** ZL (2013) Catal Lett 143(2):200–205

    Article  CAS  Google Scholar 

  21. Suarez PAZ, Dullius JEL, Einloft S, DeSouza RF, Dupont J (1996) Polyhedron 15(7):1217–1219

    Article  CAS  Google Scholar 

  22. Ott LS, Cline ML, Deetlefs M, Seddon KR, Finke RG (2005) J Am Chem Soc 127(16):5758–5759

    Article  CAS  Google Scholar 

  23. Prechtl MHG, Campbell PS, Scholten JD, Fraser GB, Machado G, Santini CC, Dupont J, Chauvin Y (2010) Nanoscale 2(12):2601–2606

    Article  CAS  Google Scholar 

  24. Garcia-Mota M, Bridier B, Perez-Ramirez J, Lopez N (2010) J Catal 273(2):92–102

    Article  CAS  Google Scholar 

  25. Vile G, Almora-Barrios N, Mitchell S, Lopez N, Perez-Ramirez J (2014) Chem Eur J 20(20):5926–5937

    Article  CAS  Google Scholar 

  26. Witte PT, Boland S, Kirby F, van Maanen R, Bleeker BF, de Winter DAM, Post JA, Geus JW, Berben PH (2013) ChemCatChem 5(2):582–587

    Article  CAS  Google Scholar 

  27. Borodzinski A (2006) Catal Rev Sci Eng 48(2):91–144

    Article  CAS  Google Scholar 

  28. Yang B, Burch R, Hardacre C, Hu P, Hughes P (2014) J Phys Chem C 118(3):1560–1567

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minghan Han or Qin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhen, B., Chen, W., Jia, Z. et al. Continuous Hydrogenation of Monovinylacetylene for 1,3-Butadiene Production Catalyzed by Ionic Liquid Stabilized Pd Nanoparticles. Catal Lett 144, 2216–2220 (2014). https://doi.org/10.1007/s10562-014-1385-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1385-3

Keywords

Navigation