Log in

Fabrication of Dense Arrays of Platinum Nanowires on Silica, Alumina, Zirconia and Ceria Surfaces as 2-D Model Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

High-density arrays of platinum nanowires with dimensions 20 nm × 5 nm × 12 μm (width × height × length) have been produced on planar oxide thin films of silica, alumina, zirconia, and ceria. In this multi-step fabrication process, sub-20 nm single crystalline silicon nanowires were fabricated by size reduction lithography. The Si nanowire patterns were then replicated to produce a high density of Pt nanowires by nanoimprint lithography. The width and height of the Pt nanowires are uniform and are controlled with nanometer precision. The Pt surface area is larger than 2 cm2 on a 5 × 5 cm2 oxide substrate. The catalytic oxidation of CO was carried out on zirconia-supported Pt nanowires. The reaction conditions (100 Torr O2, 40 Torr CO, 513–593 K) and vacuum annealing (1023 K) did not change the nanowire structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Paszti G. Peto Z.E. Horvath A. Karacs L. Guczi (1997) Phys. Chem. B 101 2109 Occurrence Handle1:CAS:528:DyaK2sXhsVWjsLk%3D Occurrence Handle10.1021/jp961490d

    Article  CAS  Google Scholar 

  2. R.M. Hardeveld Particlevan P.L.J. Gunter L.J. Uzendoorn ParticleVan W. Wieldraaijer E.W. Kuipers J.W. Niemantsverdriet (1995) Appl. Surf. Sci. 84 339

    Google Scholar 

  3. X. Lai T.P St. Clair M. Valden D.W. Goodman (1998) Prog. Surf. Sci. 59 25 Occurrence Handle10.1016/S0079-6816(98)00034-3 Occurrence Handle1:CAS:528:DyaK1MXmslKjug%3D%3D

    Article  CAS  Google Scholar 

  4. J. Hoffmann S. Schauermann J. Hartmann V.P. Zhdanov B. Kasemo J. Libuda H.-J. Freund (2002) Chem. Phys. Lett. 354 403 Occurrence Handle10.1016/S0009-2614(02)00151-3 Occurrence Handle1:CAS:528:DC%2BD38**tFChtrw%3D

    Article  CAS  Google Scholar 

  5. J. Libuda H.-J. Freund (2002) J. Phys. Chem. B 106 4901 Occurrence Handle10.1021/jp014055e Occurrence Handle1:CAS:528:DC%2BD38XjsVersbY%3D

    Article  CAS  Google Scholar 

  6. U. Heiz A. Sanchez S. Abbet W.D. Schneider (1999) J. Am. Chem. Soc. 121 3214 Occurrence Handle10.1021/ja983616l Occurrence Handle1:CAS:528:DyaK1MXhvVKju7k%3D

    Article  CAS  Google Scholar 

  7. H.V. Roy P. Fayet F. Patthey W.-D. Schneider B. Delly C. Massobrio (1994) Phys. Rev. B 49 5611 Occurrence Handle1:CAS:528:DyaK2c**sFChu7k%3D

    CAS  Google Scholar 

  8. A.M. Argo J. Odzak F.S. Lai B.C. Gates (2002) Nature 415 623 Occurrence Handle10.1038/415623a Occurrence Handle1:CAS:528:DC%2BD38XhsVCjsLg%3D

    Article  CAS  Google Scholar 

  9. M. Schildenberger Y. Bonetti L. Aeschlimann M. Scandella J. Gobrecht R. Prins (1998) Catal. Lett. 56 1 Occurrence Handle10.1023/A:1019080222823 Occurrence Handle1:CAS:528:DyaK1cXotVaksbw%3D

    Article  CAS  Google Scholar 

  10. A.C. Krauth K.H. Lee G.H. Bernstein E.E. Wolf (1994) Catal. Lett. 27 43 Occurrence Handle10.1007/BF00806976 Occurrence Handle1:CAS:528:DyaK2cXkvFart7w%3D

    Article  CAS  Google Scholar 

  11. C. Werdinius L. Osterlund B Kasemo (2003) Langmuir 19 458 Occurrence Handle10.1021/la026459j Occurrence Handle1:CAS:528:DC%2BD38XovFSrsrk%3D

    Article  CAS  Google Scholar 

  12. J. Gaines J. Zhu E.A. Anderson G.A. Somorjai (2002) J. Phys. Chem. B 106 11463–11468

    Google Scholar 

  13. B.D. Gates Q. Xu J.C. Love D.B. Wolfe G.M. Whitesides (2004) Annu. Rev. Mater. Res. 34 339 Occurrence Handle10.1146/annurev.matsci.34.052803.091100 Occurrence Handle1:CAS:528:DC%2BD2cXmvVOju7c%3D

    Article  CAS  Google Scholar 

  14. S.Y. Chou P.R. Krauss P.J. Renstrom (1996) Science 272 85 Occurrence Handle1:CAS:528:DyaK28**tVKkt7Y%3D

    CAS  Google Scholar 

  15. L.J. Guo (2004) J. Phys. D: Appl. Phys. 37 R123 Occurrence Handle10.1088/0022-3727/37/3/027 Occurrence Handle1:CAS:528:DC%2BD2cXhtlGkur0%3D

    Article  CAS  Google Scholar 

  16. Y.K. Choi J.S. Lee J. Zhu G.A. Somorjai L.P. Lee J. Bokor (2003) J. Vac. Sci. Tech. B 21 2951 Occurrence Handle1:CAS:528:DC%2BD2cXptFOlug%3D%3D

    CAS  Google Scholar 

  17. Y.K. Choi J. Zhu J. Grunes J. Bokor G.A. Somorjai (2003) J. Phys. Chem. B 107 3340 Occurrence Handle1:CAS:528:DC%2BD3s**tF2qtbg%3D

    CAS  Google Scholar 

  18. J. Zhu, Ph.D. Dissertation, Chapter 5, (University of California, Berkeley, 2003).

  19. X.-M. Yan S. Kwon A.M. Contreras J. Bokor G.A. Somorjai (2005) Nano Lett. 5 745 Occurrence Handle1:CAS:528:DC%2BD2M**tVCktbg%3D

    CAS  Google Scholar 

  20. J.C. Schlatter M. Boudart (1972) J. Catal. 24 482 Occurrence Handle10.1016/0021-9517(72)90132-7 Occurrence Handle1:CAS:528:DyaE38XnslShuw%3D%3D

    Article  CAS  Google Scholar 

  21. B. Segal R.J. Madon M. Boudart (1978) J. Catal. 52 45 Occurrence Handle10.1016/0021-9517(78)90121-5 Occurrence Handle1:CAS:528:DyaE1cXhvV2luro%3D

    Article  CAS  Google Scholar 

  22. X. Su P.S. Cremer Y.R. Shen G.A. Somorjai (1997) J. Am. Chem. Soc. 119 3994 Occurrence Handle1:CAS:528:DyaK2s**sVyjsbg%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, XM., Kwon, S., Contreras, A. et al. Fabrication of Dense Arrays of Platinum Nanowires on Silica, Alumina, Zirconia and Ceria Surfaces as 2-D Model Catalysts. Catal Lett 105, 127–132 (2005). https://doi.org/10.1007/s10562-005-8681-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-8681-x

Key Words

Navigation