Log in

Variational Statements and Discretization of the Boundary-Value Problem of Elasticity Where Stress at the Boundary is Known

  • SYSTEMS ANALYSIS
  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

The equations of elastic equilibrium of bodies in displacements with the stresses specified at the surface of the body are considered. Such a problem does not have a unique solution in the whole space of vector functions where it exists. Two variational problems for the considered static problem of the theory of elasticity with a unique solution in the whole space are proposed and investigated. The mathematical apparatus of the study is one of the variants of the Korn inequality that is proved in the paper. Discretization of these variational problems by the finite-element method and convergence of discrete solutions is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. F. Galba and I. V. Sergienko, “Methods for computing weighted pseudoinverses and weighted normal pseudosolutions with singular weights,” Cybern. Syst. Analysis, Vol. 54, No. 3, 398–422 (2018).

    Article  Google Scholar 

  2. I. V. Sergienko, E. F. Galba, and V. S. Deineka, “Representations and expansions of weighted pseudoinverse matrices, iterative methods, and problem regularization. I. Positive definite weights,” Cybern. Syst. Analysis, Vol. 44, No. 1, 36–55 (2008).

    Article  Google Scholar 

  3. A. N. Khimich, “Perturbation bounds for the least squares problem,” Cybern. Syst. Analysis, Vol. 32, No. 3, 434–436 (1996).

    Article  MathSciNet  Google Scholar 

  4. I. N. Molchanov and M. F. Yakovlev, “Iterative processes of solving one class of incompatible systems of linear algebraic equations,” Zhurn. Vych. Mat. Mat. Fiz.,. Vol. 15, No. 3, 547–558 (1975).

    Google Scholar 

  5. M. Neumann and R. J. Plemmons, “Convergent nonnegative matrices and iterative methods for consistent linear systems,” Numer. Math., Vol. 31, No. 3, 265–279 (1978).

    Article  MathSciNet  Google Scholar 

  6. G. I. Marchuk and Yu. A. Kuznetsov, Iterative Methods and Quadratic Functionals [in Russian], Nauka, Novosibirsk (1972).

    Google Scholar 

  7. Yu. A. Kuznetsov, “Computing methods in subspaces,” in: G. I. Marchuk (ed.), Computing Processes and Systems, Issue 2 [in Russian], Nauka, Moscow (1985), pp. 265–350.

    Google Scholar 

  8. I. N. Molchanov and M. F. Yakovlev, “On one class of iterative processes of solution of incompatible systems of linear algebraic equations,” Doklady AN SSSR, Vol. 209, No. 4, 782–784 (1973).

    Google Scholar 

  9. I. N. Molchanov and M. F. Yakovlev, “On two-step iterative methods of solution of one class of incompatible systems of linear algebraic equations,” Doklady AN SSSR, Vol. 214, No. 6, 1265–1268 (1974).

    Google Scholar 

  10. H. B. Keller, “On the solution of singular and semidefinite linear systems by iterations,” SIAM J. Numer. Anal., No. 2, 281–290 (1965).

    MathSciNet  MATH  Google Scholar 

  11. C. D. Meyer and R. J. Plemmons, “Convergent powers of a matrix with applications to iterative methods for singular linear systems,” SIAM J. Numer. Anal., Vol. 14, No. 4, 699–705 (1977).

    Article  MathSciNet  Google Scholar 

  12. J. Douglas and C. Pearcy, “On convergence of alternating direction procedures in the presence of singular operators,” Numer. Math., No. 5, 175–184 (1963).

    Article  MathSciNet  Google Scholar 

  13. M. J. O’Carrol, “Inconsistencies and S.O.R. convergence for the discrete Neumann problem for a rectangle,” J. Inst. Math. Appl., No. 11, 343–350 (1973).

    Article  MathSciNet  Google Scholar 

  14. J. W. Barret and C. M. Elliott, “A practical finite element approximation of a semi-definite Neumann problem on a curved domain,” Numer. Math., Vol. 51, No. 1, 23–36 (1987).

    Article  MathSciNet  Google Scholar 

  15. A. S. L. Shieh, “On convergence of the conjugate gradient methods for singular capacitance matrix equations from the Neumann problem of the Poisson equation,” Numer. Math., Vol. 29, No. 3, 307–327 (1977/78).

    Article  MathSciNet  Google Scholar 

  16. N. S. Bakhvalov, K. Yu. Bogachev, and J. F. Metr, “An efficient algorithm to solve stiff elliptic problems with applications to the method of dummy domains,” Zhurn. Vych. Mat. Mat. Fiz., Vol. 39, No. 6, 919–931 (1999).

    MATH  Google Scholar 

  17. I. N. Molchanov, Numerical Methods for Solution of Some Elasticity Problems [in Russian], Naukova Dumka, Kyiv (1979).

    Google Scholar 

  18. E. G. Dyakonov, “Solving systems of equations of the projection–difference method for nonnegative operators,” in: G. I. Marchuk (ed.), Computing Methods of Linear Algebra: Trans. All-Union Workshop, VTs SO AN SSSR, Novosibirsk (1977), pp. 51–60.

    Google Scholar 

  19. A. A. Samarskii and E. S. Nikolaev, Methods for Solving Finite-Difference Equations [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  20. Yu. A. Kuznetsov, Iterative Matrix Methods in Subspaces, Dr. Theses, VTs AN SSSR, Moscow (1982).

    Google Scholar 

  21. J. H. Giese, “On the truncation error in a numerical solution of the Neumann problem for a rectangle,” J. Math. Phys., Vol. 37, No. 2, 169–177 (1958).

    Article  MathSciNet  Google Scholar 

  22. E. A. Volkov, “On the grid method for the boundary-value problem with an oblique and normal derivatives,” Zhurn. Vych. Mat. Mat. Fiz., Vol. 1, No. 4, 607–621 (1961).

    Google Scholar 

  23. I. N. Molchanov and E. F. Galba, “On the convergence of difference schemes for the second boundary-value problem of elasticity,” Doklady AN UkrSSR, Ser. A, No. 11, 11–14 (1982).

    MATH  Google Scholar 

  24. I. N. Molchanov and E. F. Galba, “Variational statements of the second boundary-value problem of elasticity,” Doklady AN UkrSSR, Ser. A, No. 8, 17–20 (1986).

    MATH  Google Scholar 

  25. V. G. Korneev, Finite-Element Schemes of High Orders of Accuracy [in Russian], Izd. Leningr. Univer., Leningrad (1977).

    MATH  Google Scholar 

  26. L. A. Oganesyan and L. A. Rukhovets, Variational-Difference Methods of Solution of Elliptical Equations [in Russian], Izd. AN Arm. SSR, Yerevan (1979).

    Google Scholar 

  27. B. Aliev, “Difference scheme for solution of the second boundary-value static problem of elasticity,” Zhurn. Vych. Mat. Mat. Fiz., Vol. 10, No. 6, 1481–1490 (1970).

    MathSciNet  Google Scholar 

  28. V. A. Morozov, Regularization Methods for Unstable Problems [in Russian], Izd. MGU, Moscow (1987).

    Google Scholar 

  29. A. N. Khimich, A. V. Popov, and V. V. Polyanko, “Algorithms of parallel computations for linear algebra problems with irregularly structured matrices,” Cybern. Syst. Analysis, Vol. 47, No. 6, 973–985 (2011).

    Article  MathSciNet  Google Scholar 

  30. S. G. Mikhlin, The Problem of the Minimum of a Quadratic Functional [in Russian], Gos. Izd. Tekhn.-Teor. Lit., Moscow–Leningrad (1952).

    Google Scholar 

  31. K. O. Friedrich, “On the boundary-value problems of the theory of elastisity and Korn’s inequality,” Ann. Math., Vol. 48, No. 2, 441–471 (1947).

    Article  MathSciNet  Google Scholar 

  32. G. Duvaut and J. L. Lions, Inequalities in Mechanic and Physics, Lecture Notes in Mathematics, Vol. 219, Springer-Verlag (1976).

  33. G. Fikera, Existence Theorems in Elasticity Theory [in Russian], Mir, Moscow (1974).

    Google Scholar 

  34. P. G. Ciarlet, The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, SIAM: Soc. for Industrial and Applied Mathematics (2002).

    Book  Google Scholar 

  35. G. Strang and J. Fix, An Analysis of the Finite Element Method, Wellesley-Cambridge Press (1997).

  36. I. N. Molchanov and E. F. Galba, “On finite element methods for the Neumann problem,” Numer. Math., Vol. 46, No. 4, 587–598 (1985).

    Article  MathSciNet  Google Scholar 

  37. A. George and J. Liu, Computer Solution of Sparse Linear Systems [Russian translation], Mir, Moscow (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Vareniuk.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 6, November–December, 2020, pp. 46–60.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vareniuk, N.A., Galba, E.F. & Sergienko, I.V. Variational Statements and Discretization of the Boundary-Value Problem of Elasticity Where Stress at the Boundary is Known. Cybern Syst Anal 56, 900–912 (2020). https://doi.org/10.1007/s10559-020-00310-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-020-00310-0

Keywords

Navigation