Log in

Oxidative Stress-Mediated Programmed Cell Death: a Potential Therapy Target for Atherosclerosis

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Nowadays, as a type of orderly and active death determined by genes, programmed cell death (PCD), including apoptosis, pyroptosis, ferroptosis, and necroptosis, has attracted much attention owing to its participation in numerous chronic cardiovascular diseases, especially atherosclerosis (AS), a canonical chronic inflammatory disease featured by lipid metabolism disturbance. Abundant researches have reported that PCD under distinct internal conditions fulfills different roles of atherosclerotic pathological processes, including lipid core expansion, leukocyte adhesion, and infiltration. Noteworthy, emerging evidence recently has also suggested that oxidative stress (OS), an imbalance of antioxidants and oxygen free radicals, has the potential to mediate PCD occurrence via multiple ways, including oxidization and deubiquitination. Interestingly, more recently, several studies have proposed that the mediating mechanisms could effect on the atherosclerotic initiation and progression significantly from variable aspects, so it is of great clinical importance to clarify how OS-mediated PCD and AS interact. Herein, with the aim of summarizing potential and sufficient atherosclerotic therapy targets, we seek to provide extensive analysis of the specific regulatory mechanisms of PCD mediated by OS and their multifaceted effects on the entire pathological atherosclerotic progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Libby P. The changing landscape of atherosclerosis. Nature. 2021;592(7855):524–33.

    Article  CAS  Google Scholar 

  2. Tabares-Guevara JH, Villa-Pulgarin JA, Hernandez JC. Atherosclerosis: immunopathogenesis and strategies for immunotherapy. Immunotherapy. 2021;13(14):1231–44.

    Article  CAS  Google Scholar 

  3. Vallejo J, et al. Heterogeneity of immune cells in human atherosclerosis revealed by scRNA-Seq. Cardiovasc Res. 2021;117(13):2537–43.

    CAS  Google Scholar 

  4. Gupta M, et al. Novel emerging therapies in atherosclerosis targeting lipid metabolism. Expert Opin Investig Drugs. 2020;29(6):611–22.

    Article  CAS  Google Scholar 

  5. Poznyak AV, et al. Anti-inflammatory therapy for atherosclerosis: focusing on cytokines. Int J Mol Sci. 2021;22(13):7061.

    Article  CAS  Google Scholar 

  6. Li M, et al. Programmed cell death in atherosclerosis and vascular calcification. Cell Death Dis. 2022;13(5):467.

    Article  Google Scholar 

  7. He X, et al. Pyroptosis is a critical immune-inflammatory response involved in atherosclerosis. Pharmacol Res. 2021;165:105447.

    Article  CAS  Google Scholar 

  8. Shan R, et al. Apoptosis, autophagy and atherosclerosis: relationships and the role of Hsp27. Pharmacol Res. 2021;166:105169.

    Article  CAS  Google Scholar 

  9. Chen X, et al. Ferroptosis and cardiovascular disease: role of free radical-induced lipid peroxidation. Free Radic Res. 2021;55(4):405–15.

    Article  CAS  Google Scholar 

  10. Zhao Y, et al. ROS-mediated programmed cell death (PCD) of Thalassiosira pseudonana under the stress of BDE-47. Environ Pollut. 2020;262:114342.

    Article  CAS  Google Scholar 

  11. Wang L, et al. Oxidative stress in oocyte aging and female reproduction. J Cell Physiol. 2021;236(12):7966–83.

    Article  CAS  Google Scholar 

  12. Castellini C, et al. Pathophysiology of mitochondrial dysfunction in human spermatozoa: focus on energetic metabolism, oxidative stress and apoptosis. Antioxidants (Basel). 2021;10(5):695.

    Article  CAS  Google Scholar 

  13. Boz Z, et al. N-acetylcysteine prevents olanzapine-induced oxidative stress in mHypoA-59 hypothalamic neurons. Sci Rep. 2020;10(1):19185.

    Article  CAS  Google Scholar 

  14. Sun H, et al. Harnessing C/N balance of Chromochloris zofingiensis to overcome the potential conflict in microalgal production. Commun Biol. 2020;3(1):186.

    Article  CAS  Google Scholar 

  15. Prasad AS, Bao B. Molecular mechanisms of zinc as a pro-antioxidant mediator: clinical therapeutic implications. Antioxidants (Basel). 2019;8(6):164.

    Article  CAS  Google Scholar 

  16. Blanter M, Gouwy M, Struyf S. Studying neutrophil function in vitro: cell models and environmental factors. J Inflamm Res. 2021;14:141–62.

    Article  Google Scholar 

  17. Sharma A, et al. Modulation of Nrf2 by quercetin in doxorubicin-treated rats. Heliyon. 2020;6(4):e03803.

    Article  Google Scholar 

  18. Lee DY, Song MY, and Kim EH. Role of oxidative stress and Nrf2/KEAP1 signaling in colorectal cancer: mechanisms and therapeutic perspectives with phytochemicals. Antioxidants (Basel). 2021;10(5):743.

  19. Franco R, Navarro G, and Martínez-Pinilla E. Antioxidant defense mechanisms in erythrocytes and in the central nervous system. Antioxidants (Basel). 2019;8(2):46.

  20. Li H, et al. Nrf2 deficiency attenuates atherosclerosis by reducing LOX-1-mediated proliferation and migration of vascular smooth muscle cells. Atherosclerosis. 2022;347:1–16.

    Article  CAS  Google Scholar 

  21. Ying Z, et al. Lipoicmethylenedioxyphenol reduces experimental atherosclerosis through activation of Nrf2 signaling. PLoS ONE. 2016;11(2):e0148305.

    Article  Google Scholar 

  22. Chen Y, et al. A small molecule NRF2 activator BC-1901S ameliorates inflammation through DCAF1/NRF2 axis. Redox Biol. 2020;32:101485.

    Article  CAS  Google Scholar 

  23. Qiao Q, et al. Roles of dietary bioactive peptides in redox balance and metabolic disorders. Oxid Med Cell Longev. 2021;2021:5582245.

    Article  Google Scholar 

  24. Li D, et al. The role of Nrf2 in hearing loss. Front Pharmacol. 2021;12:620921.

    Article  CAS  Google Scholar 

  25. Ghanim BY, Qinna NA. Nrf2/ARE axis signalling in hepatocyte cellular death. Mol Biol Rep. 2022;49:4039–53.

    Article  CAS  Google Scholar 

  26. Yu X, Li Y, Mu X. Effect of quercetin on PC12 Alzheimer’s disease cell model induced by Aβ (25–35) and its mechanism based on sirtuin1/Nrf2/HO-1 pathway. Biomed Res Int. 2020;2020:8210578.

    Article  Google Scholar 

  27. Zhang Q, et al. Activation of Nrf2/HO-1 signaling: an important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J Adv Res. 2021;34:43–63.

    Article  CAS  Google Scholar 

  28. Wang Y, et al. Circular RNAs: novel players in the oxidative stress-mediated pathologies, biomarkers, and therapeutic targets. Oxid Med Cell Longev. 2021;2021:6634601.

    Google Scholar 

  29. Song L, et al. Chinese herbal medicines and active metabolites: potential antioxidant treatments for atherosclerosis. Front Pharmacol. 2021;12:675999.

    Article  CAS  Google Scholar 

  30. Buchmann GK, et al. Deletion of NoxO1 limits atherosclerosis development in female mice. Redox Biol. 2020;37:101713.

    Article  CAS  Google Scholar 

  31. Trum M, Riechel J, and Wagner S. Cardioprotection by SGLT2 inhibitors-does it all come down to Na(+)? Int J Mol Sci. 2021;22(15):7976.

  32. Trum M, et al. Inhibition of cardiac potassium currents by oxidation-activated protein kinase A contributes to early afterdepolarizations in the heart. Am J Physiol Heart Circ Physiol. 2020;319(6):H1347-h1357.

    Article  CAS  Google Scholar 

  33. Matilla AJ. Cellular oxidative stress in programmed cell death: focusing on chloroplastic (1)O(2) and mitochondrial cytochrome-c release. J Plant Res. 2021;134(2):179–94.

    Article  CAS  Google Scholar 

  34. Obeng E. Apoptosis (programmed cell death) and its signals - a review. Braz J Biol. 2021;81(4):1133–43.

    Article  CAS  Google Scholar 

  35. Goldblatt ZE, Cirka HA, Billiar KL. Mechanical regulation of apoptosis in the cardiovascular system. Ann Biomed Eng. 2021;49(1):75–97.

    Article  Google Scholar 

  36. Dou Z, et al. Aberrant Bcl-x splicing in cancer: from molecular mechanism to therapeutic modulation. J Exp Clin Cancer Res. 2021;40(1):194.

    Article  CAS  Google Scholar 

  37. Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17(7):395–417.

    Article  Google Scholar 

  38. Cheng Q, et al. Long non-coding RNA LOC285194 regulates vascular smooth muscle cell apoptosis in atherosclerosis. Bioengineered. 2020;11(1):53–60.

    Article  CAS  Google Scholar 

  39. Li Q, et al. HRD1 prevents atherosclerosis-mediated endothelial cell apoptosis by promoting LOX-1 degradation. Cell Cycle. 2020;19(12):1466–77.

    Article  CAS  Google Scholar 

  40. Zhang N, et al. The regulation of Ero1-alpha in homocysteine-induced macrophage apoptosis and vulnerable plaque formation in atherosclerosis. Atherosclerosis. 2021;334:39–47.

    Article  CAS  Google Scholar 

  41. Tawakol A, Abohashem S, Zureigat H. Imaging apoptosis in atherosclerosis: from cell death, a ray of light. J Am Coll Cardiol. 2020;76(16):1875–7.

    Article  Google Scholar 

  42. Liu C, et al. The function, regulation and mechanism of programmed cell death of macrophages in atherosclerosis. Front Cell Dev Biol. 2021;9:809516.

    Article  Google Scholar 

  43. Lin X, et al. Focus on ferroptosis, pyroptosis, apoptosis and autophagy of vascular endothelial cells to the strategic targets for the treatment of atherosclerosis. Arch Biochem Biophys. 2022;715:109098.

    Article  CAS  Google Scholar 

  44. Fang S, et al. IRGM/Irgm1 facilitates macrophage apoptosis through ROS generation and MAPK signal transduction: Irgm1(+/-) mice display increases atherosclerotic plaque stability. Theranostics. 2021;11(19):9358–75.

    Article  CAS  Google Scholar 

  45. Guo Y, et al. PCSK9 (proprotein convertase subtilisin/Kexin type 9) Triggers vascular smooth muscle cell senescence and apoptosis: implication of its direct role in degenerative vascular disease. Arterioscler Thromb Vasc Biol. 2022;42(1):67–86.

    Article  CAS  Google Scholar 

  46. van der Meer IM, et al. Soluble Fas, a mediator of apoptosis, C-reactive protein, and coronary and extracoronary atherosclerosis. The Rotterdam Coronary Calcification Study. Atherosclerosis. 2006;189(2):464–9.

    Article  Google Scholar 

  47. Zadelaar AS, et al. Increased vulnerability of pre-existing atherosclerosis in ApoE-deficient mice following adenovirus-mediated Fas ligand gene transfer. Atherosclerosis. 2005;183(2):244–50.

    Article  CAS  Google Scholar 

  48. Patel M, et al. Considerations for analysis of endothelial shear stress and strain in FSI models of atherosclerosis. J Biomech. 2021;128:110720.

    Article  Google Scholar 

  49. Schneider DB, et al. Expression of Fas ligand in arteries of hypercholesterolemic rabbits accelerates atherosclerotic lesion formation. Arterioscler Thromb Vasc Biol. 2000;20(2):298–308.

    Article  CAS  Google Scholar 

  50. Pi S, et al. The P2RY12 receptor promotes VSMC-derived foam cell formation by inhibiting autophagy in advanced atherosclerosis. Autophagy. 2021;17(4):980–1000.

    Article  CAS  Google Scholar 

  51. Liu J, et al. Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol. 2005;25(1):174–9.

    Article  CAS  Google Scholar 

  52. Martinet W, et al. Macrophage death as a pharmacological target in atherosclerosis. Front Pharmacol. 2019;10:306.

    Article  CAS  Google Scholar 

  53. Mirzaei S, et al. Elucidating role of reactive oxygen species (ROS) in cisplatin chemotherapy: a focus on molecular pathways and possible therapeutic strategies. Molecules. 2021;26(8):2382.

    Article  CAS  Google Scholar 

  54. Mill C, et al. Wnt5a-induced Wnt1-inducible secreted protein-1 suppresses vascular smooth muscle cell apoptosis induced by oxidative stress. Arterioscler Thromb Vasc Biol. 2014;34(11):2449–56.

    Article  CAS  Google Scholar 

  55. Zhang Y, et al. Palmitate induces VSMC apoptosis via toll like receptor (TLR)4/ROS/p53 pathway. Atherosclerosis. 2017;263:74–81.

    Article  CAS  Google Scholar 

  56. Choi Y, et al. Causal associations between serum bilirubin levels and decreased stroke risk: a two-sample mendelian randomization study. Arterioscler Thromb Vasc Biol. 2020;40(2):437–45.

    Article  CAS  Google Scholar 

  57. Geng T, et al. CD137 Signaling promotes endothelial apoptosis by inhibiting Nrf2 pathway, and upregulating NF-κB pathway. Mediators Inflamm. 2020;2020:4321912.

    Article  Google Scholar 

  58. Iyer S, et al. Robust autoactivation for apoptosis by BAK but not BAX highlights BAK as an important therapeutic target. Cell Death Dis. 2020;11(4):268.

    Article  CAS  Google Scholar 

  59. Li D, et al. Reactive oxygen species (ROS) control the expression of Bcl-2 family proteins by regulating their phosphorylation and ubiquitination. Cancer Sci. 2004;95(8):644–50.

    Article  CAS  Google Scholar 

  60. Luanpitpong S, et al. Mitochondrial superoxide mediates doxorubicin-induced keratinocyte apoptosis through oxidative modification of ERK and Bcl-2 ubiquitination. Biochem Pharmacol. 2012;83(12):1643–54.

    Article  CAS  Google Scholar 

  61. Luanpitpong S, et al. Regulation of apoptosis by Bcl-2 cysteine oxidation in human lung epithelial cells. Mol Biol Cell. 2013;24(6):858–69.

    Article  CAS  Google Scholar 

  62. Seo J, et al. Necroptosis molecular mechanisms: recent findings regarding novel necroptosis regulators. Exp Mol Med. 2021;53(6):1007–17.

    Article  CAS  Google Scholar 

  63. Du J, et al. Icariside II overcomes TRAIL resistance of melanoma cells through ROS-mediated downregulation of STAT3/cFLIP signaling. Oncotarget. 2016;7(32):52218–29.

    Article  Google Scholar 

  64. Robinson N, et al. Programmed necrotic cell death of macrophages: focus on pyroptosis, necroptosis, and parthanatos. Redox Biol. 2019;26:101239.

    Article  CAS  Google Scholar 

  65. Liu B, et al. Inflammatory caspases drive pyroptosis in acute lung injury. Front Pharmacol. 2021;12:631256.

    Article  CAS  Google Scholar 

  66. Yuan B, et al. Inhibition of AIM2 inflammasome activation alleviates GSDMD-induced pyroptosis in early brain injury after subarachnoid haemorrhage. Cell Death Dis. 2020;11(1):76.

    Article  CAS  Google Scholar 

  67. Zhang KJ, et al. Pyroptosis: a new frontier in kidney diseases. Oxid Med Cell Longev. 2021;2021:6686617.

    Google Scholar 

  68. Yu P, et al. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021;6(1):128.

    Article  Google Scholar 

  69. Du T, et al. Pyroptosis, metabolism, and tumor immune microenvironment. Clin Transl Med. 2021;11(8):e492.

    Article  CAS  Google Scholar 

  70. Xu S, et al. Targeting HDAC6 attenuates nicotine-induced macrophage pyroptosis via NF-κB/NLRP3 pathway. Atherosclerosis. 2021;317:1–9.

    Article  CAS  Google Scholar 

  71. Li X, et al. SENP7 knockdown inhibited pyroptosis and NF-κB/NLRP3 inflammasome pathway activation in Raw 264.7 cells. Sci Rep. 2020;10(1):16265.

    Article  CAS  Google Scholar 

  72. Wolf D, Ley K. Immunity and inflammation in atherosclerosis. Circ Res. 2019;124(2):315–27.

    Article  CAS  Google Scholar 

  73. Zhu X, et al. Potential injurious effects of the fine particulate PM2.5 on the progression of atherosclerosis in apoE-deficient mice by activating platelets and leukocytes. Arch Med Sci. 2019;15(1):250–61.

    Article  CAS  Google Scholar 

  74. Abbate A, et al. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ Res. 2020;126(9):1260–80.

    Article  CAS  Google Scholar 

  75. Ridker PM, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31.

    Article  CAS  Google Scholar 

  76. Svensson EC, et al. TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol. 2022;7(5):521–8.

    Article  Google Scholar 

  77. Kirii H, et al. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2003;23(4):656–60.

    Article  CAS  Google Scholar 

  78. Shi X, et al. Expression of the NLRP3 inflammasome in carotid atherosclerosis. J Stroke Cerebrovasc Dis. 2015;24(11):2455–66.

    Article  Google Scholar 

  79. Niyonzima N, et al. Cholesterol crystals use complement to increase NLRP3 signaling pathways in coronary and carotid atherosclerosis. EBioMedicine. 2020;60:102985.

    Article  Google Scholar 

  80. Duewell P, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–61.

    Article  CAS  Google Scholar 

  81. Sharma A, et al. Specific NLRP3 inhibition protects against diabetes-associated atherosclerosis. Diabetes. 2021;70(3):772–87.

    Article  CAS  Google Scholar 

  82. Zheng F, et al. Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice. Mediators Inflamm. 2014;2014:507208.

    Article  Google Scholar 

  83. Li Y, et al. VX-765 attenuates atherosclerosis in ApoE deficient mice by modulating VSMCs pyroptosis. Exp Cell Res. 2020;389(1):111847.

    Article  CAS  Google Scholar 

  84. Fidler TP, et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature. 2021;592(7853):296–301.

    Article  CAS  Google Scholar 

  85. Hakimi M, et al. Inflammation-related induction of absent in melanoma 2 (AIM2) in vascular cells and atherosclerotic lesions suggests a role in vascular pathogenesis. J Vasc Surg. 2014;59(3):794–803.

    Article  Google Scholar 

  86. Menu P, et al. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis. 2011;2(3):e137.

    Article  CAS  Google Scholar 

  87. Chen S, et al. Sex-specific effects of the Nlrp3 inflammasome on atherogenesis in LDL receptor-deficient mice. JACC Basic Transl Sci. 2020;5(6):582–98.

    Article  Google Scholar 

  88. Kelley N, et al. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20(13):3328.

    Article  CAS  Google Scholar 

  89. Takahashi M. Cell-specific roles of NLRP3 inflammasome in myocardial infarction. J Cardiovasc Pharmacol. 2019;74(3):188–93.

    Article  CAS  Google Scholar 

  90. McKee CM, Coll RC. NLRP3 inflammasome priming: a riddle wrapped in a mystery inside an enigma. J Leukoc Biol. 2020;108(3):937–52.

    Article  CAS  Google Scholar 

  91. Zhou R, et al. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5.

    Article  CAS  Google Scholar 

  92. Kim SR, et al. NLRP3 inflammasome activation by mitochondrial ROS in bronchial epithelial cells is required for allergic inflammation. Cell Death Dis. 2014;5(10):e1498.

    Article  CAS  Google Scholar 

  93. Lin HC, et al. Cbl negatively regulates NLRP3 inflammasome activation through GLUT1-dependent glycolysis inhibition. Int J Mol Sci. 2020;21(14):5104.

    Article  CAS  Google Scholar 

  94. Yu E, et al. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation. 2013;128(7):702–12.

    Article  CAS  Google Scholar 

  95. Gray K, et al. Effects of DNA damage in smooth muscle cells in atherosclerosis. Circ Res. 2015;116(5):816–26.

    Article  CAS  Google Scholar 

  96. Li S, et al. SFTSV infection induces BAK/BAX-dependent mitochondrial DNA release to trigger NLRP3 inflammasome activation. Cell Rep. 2020;30(13):4370-4385.e7.

    Article  CAS  Google Scholar 

  97. Zhong Z, et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature. 2018;560(7717):198–203.

    Article  CAS  Google Scholar 

  98. Ding Z, et al. LOX-1, mtDNA damage, and NLRP3 inflammasome activation in macrophages: implications in atherogenesis. Cardiovasc Res. 2014;103(4):619–28.

    Article  CAS  Google Scholar 

  99. Tumurkhuu G, et al. Ogg1-dependent DNA repair regulates NLRP3 inflammasome and prevents atherosclerosis. Circ Res. 2016;119(6):e76-90.

    Article  CAS  Google Scholar 

  100. Ruan J, Wang S, Wang J. Mechanism and regulation of pyroptosis-mediated in cancer cell death. Chem Biol Interact. 2020;323:109052.

    Article  CAS  Google Scholar 

  101. Wang Y, et al. Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation. J Mol Cell Biol. 2019;11(12):1069–82.

    Article  CAS  Google Scholar 

  102. Raut PK, et al. Growth of breast cancer cells by leptin is mediated via activation of the inflammasome: critical roles of estrogen receptor signaling and reactive oxygen species production. Biochem Pharmacol. 2019;161:73–88.

    Article  CAS  Google Scholar 

  103. Juliana C, et al. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem. 2012;287(43):36617–22.

    Article  CAS  Google Scholar 

  104. Py BF, et al. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell. 2013;49(2):331–8.

    Article  CAS  Google Scholar 

  105. Lopez-Castejon G, et al. Deubiquitinases regulate the activity of caspase-1 and interleukin-1β secretion via assembly of the inflammasome. J Biol Chem. 2013;288(4):2721–33.

    Article  CAS  Google Scholar 

  106. Hu B, et al. The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science. 2016;354(6313):765–8.

    Article  CAS  Google Scholar 

  107. Chen ML et al. Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway. J Am Heart Assoc. 2017;6(9):e006347.

  108. Chen H, et al. Cadmium induces NLRP3 inflammasome-dependent pyroptosis in vascular endothelial cells. Toxicol Lett. 2016;246:7–16.

    Article  CAS  Google Scholar 

  109. Dixon SJ, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72.

    Article  CAS  Google Scholar 

  110. Leng Y, et al. Ferroptosis: a potential target in cardiovascular disease. Front Cell Dev Biol. 2021;9:813668.

    Article  Google Scholar 

  111. Lee H, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol. 2020;22(2):225–34.

    Article  CAS  Google Scholar 

  112. Ng SW, Norwitz SG, Norwitz ER. The impact of iron overload and ferroptosis on reproductive disorders in humans: implications for preeclampsia. Int J Mol Sci. 2019;20(13):3283.

    Article  CAS  Google Scholar 

  113. Chen J, et al. The multifaceted role of ferroptosis in liver disease. Cell Death Differ. 2022;29(3):467–80.

    Article  CAS  Google Scholar 

  114. Conrad M, Pratt DA. The chemical basis of ferroptosis. Nat Chem Biol. 2019;15(12):1137–47.

    Article  CAS  Google Scholar 

  115. Liang C, et al. Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 2019;31(51):e1904197.

    Article  Google Scholar 

  116. Qian ZM, Ke Y. Hepcidin and its therapeutic potential in neurodegenerative disorders. Med Res Rev. 2020;40(2):633–53.

    Article  CAS  Google Scholar 

  117. Beatty A, et al. Ferroptotic cell death triggered by conjugated linolenic acids is mediated by ACSL1. Nat Commun. 2021;12(1):2244.

    Article  CAS  Google Scholar 

  118. Zeya B, Chandra NC. LOX-1: Its cytotopographical variance and disease stress. J Biochem Mol Toxicol. 2019;33(9):e22375.

    Article  Google Scholar 

  119. Bai T, et al. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med. 2020;160:92–102.

    Article  CAS  Google Scholar 

  120. Muri J, et al. B1 and marginal zone B cells but not follicular B2 cells require Gpx4 to prevent lipid peroxidation and ferroptosis. Cell Rep. 2019;29(9):2731-2744.e4.

    Article  CAS  Google Scholar 

  121. Guo Z, et al. Suppression of atherogenesis by overexpression of glutathione peroxidase-4 in apolipoprotein E-deficient mice. Free Radic Biol Med. 2008;44(3):343–52.

    Article  CAS  Google Scholar 

  122. Mathew OP, Ranganna K, Milton SG. Involvement of the antioxidant effect and anti-inflammatory response in butyrate-inhibited vascular smooth muscle cell proliferation. Pharmaceuticals (Basel). 2014;7(11):1008–27.

    Article  CAS  Google Scholar 

  123. Naito Y, et al. Crosstalk between iron and arteriosclerosis. J Atheroscler Thromb. 2022;29(3):308–14.

    Article  CAS  Google Scholar 

  124. Vinchi F, et al. Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction. Eur Heart J. 2020;41(28):2681–95.

    Article  CAS  Google Scholar 

  125. Zhang M, et al. Effect of tetramethylpyrazine and hyperlipidemia on hepcidin homeostasis in mice. Int J Mol Med. 2019;43(1):501–6.

    CAS  Google Scholar 

  126. Malhotra R, et al. Hepcidin deficiency protects against atherosclerosis. Arterioscler Thromb Vasc Biol. 2019;39(2):178–87.

    Article  CAS  Google Scholar 

  127. Saeed O, et al. Pharmacological suppression of hepcidin increases macrophage cholesterol efflux and reduces foam cell formation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32(2):299–307.

    Article  CAS  Google Scholar 

  128. Shah R, Shchepinov MS, Pratt DA. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent Sci. 2018;4(3):387–96.

    Article  CAS  Google Scholar 

  129. Li C, et al. CTRP5 promotes transcytosis and oxidative modification of low-density lipoprotein and the development of atherosclerosis. Atherosclerosis. 2018;278:197–209.

    Article  CAS  Google Scholar 

  130. Sampilvanjil A, et al. Cigarette smoke extract induces ferroptosis in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2020;318(3):H508-h518.

    Article  CAS  Google Scholar 

  131. Yu B, et al. Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy. Nat Commun. 2020;11(1):3637.

    Article  CAS  Google Scholar 

  132. Wang C, et al. Fenton-like reaction of the iron(II)-histidine complex generates hydroxyl radicals: implications for oxidative stress and Alzheimer’s disease. Chem Commun (Camb). 2021;57(92):12293–6.

    Article  CAS  Google Scholar 

  133. Samet JM, et al. Non-redox cycling mechanisms of oxidative stress induced by PM metals. Free Radic Biol Med. 2020;151:26–37.

    Article  CAS  Google Scholar 

  134. Singh N, Bhatla SC. Heme oxygenase-nitric oxide crosstalk-mediated iron homeostasis in plants under oxidative stress. Free Radic Biol Med. 2022;182:192–205.

    Article  CAS  Google Scholar 

  135. Marques VB, et al. Chronic iron overload intensifies atherosclerosis in apolipoprotein E deficient mice: role of oxidative stress and endothelial dysfunction. Life Sci. 2019;233:116702.

    Article  Google Scholar 

  136. Xu S. Iron and atherosclerosis: the link revisited. Trends Mol Med. 2019;25(8):659–61.

    Article  CAS  Google Scholar 

  137. Chen GH, et al. Mitochondrial oxidative stress mediated Fe-induced ferroptosis via the NRF2-ARE pathway. Free Radic Biol Med. 2022;180:95–107.

    Article  CAS  Google Scholar 

  138. Li X, et al. A narrative review of the role of necroptosis in liver disease: a double-edged sword. Ann Transl Med. 2021;9(5):422.

    Article  CAS  Google Scholar 

  139. Speir M, et al. Targeting RIP kinases in chronic inflammatory disease. Biomolecules. 2021;11(5):646.

    Article  CAS  Google Scholar 

  140. Yan J, et al. Necroptosis and tumor progression. Trends Cancer. 2022;8(1):21–7.

    Article  CAS  Google Scholar 

  141. Zhou Y, et al. Insight into crosstalk between ferroptosis and necroptosis: novel therapeutics in ischemic stroke. Oxid Med Cell Longev. 2021;2021:9991001.

    Article  Google Scholar 

  142. Yu Z, et al. Necroptosis: a novel pathway in neuroinflammation. Front Pharmacol. 2021;12:701564.

    Article  CAS  Google Scholar 

  143. Wang H, et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 2014;54(1):133–46.

    Article  CAS  Google Scholar 

  144. Orozco S, et al. RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis. Cell Death Differ. 2014;21(10):1511–21.

    Article  CAS  Google Scholar 

  145. Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021;18(5):1106–21.

    Article  CAS  Google Scholar 

  146. Chen J, et al. Molecular insights into the mechanism of necroptosis: the necrosome as a potential therapeutic target. Cells. 2019;8(12):1486.

    Article  CAS  Google Scholar 

  147. Kattoor AJ, Kanuri SH, Mehta JL. Role of Ox-LDL and LOX-1 in atherogenesis. Curr Med Chem. 2019;26(9):1693–700.

    Article  CAS  Google Scholar 

  148. Karunakaran D, et al. Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis. Sci Adv. 2016;2(7):e1600224.

    Article  Google Scholar 

  149. Leeper NJ. The role of necroptosis in atherosclerotic disease. JACC Basic Transl Sci. 2016;1(6):548–50.

    Article  Google Scholar 

  150. Lin J, et al. A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep. 2013;3(1):200–10.

    Article  CAS  Google Scholar 

  151. Meng L, et al. RIP3-dependent necrosis induced inflammation exacerbates atherosclerosis. Biochem Biophys Res Commun. 2016;473(2):497–502.

    Article  CAS  Google Scholar 

  152. Karunakaran D, et al. RIPK1 expression associates with inflammation in early atherosclerosis in humans and can be therapeutically silenced to reduce NF-κB activation and atherogenesis in mice. Circulation. 2021;143(2):163–77.

    Article  CAS  Google Scholar 

  153. Rasheed A, et al. Loss of MLKL (mixed lineage kinase domain-like protein) decreases necrotic core but increases macrophage lipid accumulation in atherosclerosis. Arterioscler Thromb Vasc Biol. 2020;40(5):1155–67.

    Article  CAS  Google Scholar 

  154. Zhang Y, et al. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun. 2017;8:14329.

    Article  CAS  Google Scholar 

  155. Zhu P, et al. Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: a mechanism involving calcium overload/XO/ROS/mPTP pathway. Redox Biol. 2018;16:157–68.

    Article  CAS  Google Scholar 

  156. Hsu SK, et al. The role of necroptosis in ROS-mediated cancer therapies and its promising applications. Cancers (Basel). 2020;12(8):2185.

    Article  CAS  Google Scholar 

  157. Lu B, et al. Shikonin induces glioma cell necroptosis in vitro by ROS overproduction and promoting RIP1/RIP3 necrosome formation. Acta Pharmacol Sin. 2017;38(11):1543–53.

    Article  CAS  Google Scholar 

  158. Tang Q, et al. Bim- and Bax-mediated mitochondrial pathway dominates abivertinib-induced apoptosis and ferroptosis. Free Radic Biol Med. 2022;180:198–209.

    Article  CAS  Google Scholar 

  159. Wang F, et al. Neuregulin-1 alleviate oxidative stress and mitigate inflammation by suppressing NOX4 and NLRP3/caspase-1 in myocardial ischaemia-reperfusion injury. J Cell Mol Med. 2021;25(3):1783–95.

    Article  CAS  Google Scholar 

  160. Masuyama A, et al. Defective autophagy in vascular smooth muscle cells enhances atherosclerotic plaque instability. Biochem Biophys Res Commun. 2018;505(4):1141–7.

    Article  CAS  Google Scholar 

  161. Vion AC, et al. Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow. Proc Natl Acad Sci U S A. 2017;114(41):E8675-e8684.

    Article  CAS  Google Scholar 

  162. Cai X, et al. GLP-1 treatment protects endothelial cells from oxidative stress-induced autophagy and endothelial dysfunction. Int J Biol Sci. 2018;14(12):1696–708.

    Article  CAS  Google Scholar 

  163. Ge P, et al. Downregulation of microRNA-512-3p enhances the viability and suppresses the apoptosis of vascular endothelial cells, alleviates autophagy and endoplasmic reticulum stress as well as represses atherosclerotic lesions in atherosclerosis by adjusting spliced/unspliced ratio of X-box binding protein 1 (XBP-1S/XBP-1U). Bioengineered. 2021;12(2):12469–81.

    Article  CAS  Google Scholar 

  164. Martínez GJ, Celermajer DS, Patel S. The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis. 2018;269:262–71.

    Article  Google Scholar 

  165. Yang M, et al. Colchicine alleviates cholesterol crystal-induced endothelial cell pyroptosis through activating AMPK/SIRT1 pathway. Oxid Med Cell Longev. 2020;2020:9173530.

    Article  Google Scholar 

  166. Parsamanesh N, et al. NLRP3 inflammasome as a treatment target in atherosclerosis: a focus on statin therapy. Int Immunopharmacol. 2019;73:146–55.

    Article  CAS  Google Scholar 

  167. Mollazadeh H, et al. Effects of statins on mitochondrial pathways. J Cachexia Sarcopenia Muscle. 2021;12(2):237–51.

    Article  Google Scholar 

  168. Yang L, et al. Dapagliflozin attenuates cholesterol overloading-induced injury in mice hepatocytes with type 2 diabetes mellitus (T2DM) via eliminating oxidative damages. Cell Cycle. 2022;21(6):641–54.

    Article  CAS  Google Scholar 

Download references

Funding

This research is supported by the National Natural Science Foundation of China (No. 82061130223 and No. 82072031), HMU Marshal Initiative Funding (HMUMIF-21016), and Fund of Key Laboratory of Myocardial Ischemia, Ministry of Education (KF202020/LX).

Author information

Authors and Affiliations

Authors

Contributions

Y. C., X. L, X.B., and. B.X.: conceptualization and writing; H. J. and B. Y.: review and editing.

Corresponding author

Correspondence to Haibo Jia.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All the authors have given their approval for this manuscript to be published.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Luo, X., Xu, B. et al. Oxidative Stress-Mediated Programmed Cell Death: a Potential Therapy Target for Atherosclerosis. Cardiovasc Drugs Ther (2022). https://doi.org/10.1007/s10557-022-07414-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10557-022-07414-z

Keywords

Navigation