Log in

Co-registered optical coherence tomography and X-ray angiography for the prediction of fractional flow reserve

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) stands as the leading global cause of mortality, and coronary artery disease (CAD) has the highest prevalence, contributing to 42% of these fatalities. Recognizing the constraints inherent in the anatomical assessment of CAD, Fractional Flow Reserve (FFR) has emerged as a pivotal functional diagnostic metric. Herein, we assess the potential of employing an ensemble approach with deep neural networks (DNN) to predict invasively measured Fractional Flow Reserve (FFR) using raw anatomical data extracted from both optical coherence tomography (OCT) and X-ray coronary angiography (XA). In this study, we used a challenging dataset, with 46% of the lesions falling within the FFR range of 0.75 to 0.85. Despite this complexity, our model achieved an accuracy of 84.3%, demonstrating a sensitivity of 87.5% and a specificity of 81.4%. Our results demonstrate that incorporating both OCT and XA signals, co-registered, as inputs for the DNN model leads to an important increase in overall accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G et al (2017) Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 70(1):1–25

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ryan TJ (2002) The coronary angiogram and its seminal contributions to cardiovascular medicine over five decades. Circulation 106(6):752–756

    Article  PubMed  Google Scholar 

  3. Gutierrez-Chico JL, Alegría-Barrero E, Teijeiro-Mestre R, Chan PH, Tsujioka H, de Silva R et al (2012) Optical coherence tomography: from research to practice. Eur Heart Journal–Cardiovascular Imaging 13(5):370–384

    Article  Google Scholar 

  4. Gutiérrez-Chico JL, Regar E, Nüesch E, Okamura T, Wykrzykowska J, di Mario C et al (2011) Delayed coverage in malapposed and side-branch struts with respect to well-apposed struts in drug-eluting stents: in vivo assessment with optical coherence tomography. Circulation 124(5):612–623

    Article  PubMed  Google Scholar 

  5. Gutiérrez-Chico JL, Wykrzykowska J, Nüesch E, van Geuns RJ, Koch KT, Koolen JJ et al (2012) Vascular tissue reaction to acute malapposition in human coronary arteries: sequential assessment with optical coherence tomography. Circulation: Cardiovasc Interventions 5(1):20–29

    Google Scholar 

  6. Ali ZA, Maehara A, Généreux P, Shlofmitz RA, Fabbiocchi F, Nazif TM et al (2016) Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. Lancet 388(10060):2618–2628

    Article  PubMed  Google Scholar 

  7. Gonzalo N, Escaned J, Alfonso F, Nolte C, Rodriguez V, Jimenez-Quevedo P et al (2012) Morphometric assessment of coronary stenosis relevance with optical coherence tomography: a comparison with fractional flow reserve and intravascular ultrasound. J Am Coll Cardiol 59(12):1080–1089

    Article  PubMed  Google Scholar 

  8. Pijls NH, de Bruyne B, Peels K, van der Voort PH, Bonnier HJ, Bartunek J et al (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334(26):1703–1708

    Article  CAS  PubMed  Google Scholar 

  9. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, vant Veer M et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224

    Article  CAS  PubMed  Google Scholar 

  10. Tu S, Bourantas CV, Nørgaard BL, Kassab GS, Koo BK, Reiber J (2015) Image-based assessment of fractional flow reserve. EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology. 11:V50–V54

  11. Yang DH, Kim Y-H, Roh JH, Kang J-W, Ahn J-M, Kweon J et al (2017) Diagnostic performance of on-site CT-derived fractional flow reserve versus CT perfusion. Eur Heart Journal–Cardiovascular Imaging 18(4):432–440

    Article  Google Scholar 

  12. Coenen A, Lubbers MM, Kurata A, Kono A, Dedic A, Chelu RG et al (2015) Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm. Radiology 274(3):674–683

    Article  PubMed  Google Scholar 

  13. Renker M, Schoepf UJ, Wang R, Meinel FG, Rier JD, Bayer IIRR et al (2014) Comparison of diagnostic value of a novel noninvasive coronary computed tomography angiography method versus standard coronary angiography for assessing fractional flow reserve. Am J Cardiol 114(9):1303–1308

    Article  PubMed  Google Scholar 

  14. Koo B-K, Erglis A, Doh J-H, Daniels DV, Jegere S, Kim H-S et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms: results from the prospective multicenter DISCOVER-FLOW (diagnosis of ischemia-causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 58(19):1989–1997

    Article  PubMed  Google Scholar 

  15. Tu S, Westra J, Yang J, von Birgelen C, Ferrara A, Pellicano M et al (2016) Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: the international multicenter FAVOR pilot study. Cardiovasc Interventions 9(19):2024–2035

    Article  Google Scholar 

  16. Tröbs M, Achenbach S, Röther J, Redel T, Scheuering M, Winneberger D et al (2016) Comparison of fractional flow reserve based on computational fluid dynamics modeling using coronary angiographic vessel morphology versus invasively measured fractional flow reserve. Am J Cardiol 117(1):29–35

    Article  PubMed  Google Scholar 

  17. Papafaklis MI, Muramatsu T, Ishibashi Y, Lakkas LS, Nakatani S, Bourantas CV et al (2014) Fast virtual functional assessment of intermediate coronary lesions using routine angiographic data and blood flow simulation in humans: comparison with pressure wire-fractional flow reserve. EuroIntervention: J EuroPCR Collab Working Group Interventional Cardiol Eur Soc Cardiol 10(5):574–583

    Article  Google Scholar 

  18. Tu S, Barbato E, Köszegi Z, Yang J, Sun Z, Holm NR et al (2014) Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: a fast computer model to quantify the functional significance of moderately obstructed coronary arteries. JACC: Cardiovasc Interventions 7(7):768–777

    Google Scholar 

  19. Morris PD, Ryan D, Morton AC, Lycett R, Lawford PV, Hose DR et al (2013) Virtual fractional flow reserve from coronary angiography: modeling the significance of coronary lesions: results from the VIRTU-1 (VIRTUal fractional Flow Reserve from Coronary Angiography) study. JACC: Cardiovasc Interventions 6(2):149–157

    Google Scholar 

  20. Seike F, Uetani T, Nishimura K, Kawakami H, Higashi H, Aono J et al (2017) Intracoronary optical coherence tomography-derived virtual fractional flow reserve for the assessment of coronary artery disease. Am J Cardiol 120(10):1772–1779

    Article  PubMed  Google Scholar 

  21. Jang S-J, Ahn J-M, Kim B, Gu J-M, Sung HJ, Park S-J et al (2017) Comparison of accuracy of one-use methods for calculating fractional flow reserve by intravascular optical coherence tomography to that determined by the pressure-wire method. Am J Cardiol 120(11):1920–1925

    Article  PubMed  Google Scholar 

  22. Yu W, Huang J, Jia D, Chen S, Raffel OC, Ding D et al (2019) Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity. EuroIntervention: J EuroPCR Collab Working Group Interventional Cardiol Eur Soc Cardiol 15(2):189

    Article  Google Scholar 

  23. Ha J, Kim J-S, Lim J, Kim G, Lee S, Lee JS et al (2016) Assessing computational fractional flow reserve from optical coherence tomography in patients with intermediate coronary stenosis in the left anterior descending artery. Circulation: Cardiovasc Interventions 9(8):e003613

    Google Scholar 

  24. Itu L, Sharma P, Mihalef V, Kamen A, Suciu C, Lomaniciu D (2012) A patient-specific reduced-order model for coronary circulation. 2012 9th IEEE international symposium on biomedical imaging (ISBI): IEEE; p. 832-5

  25. Deng S-B, **g X-D, Wang J, Huang C, **a S, Du J-L et al (2015) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in coronary artery disease: a systematic review and meta-analysis. Int J Cardiol 184:703–709

    Article  PubMed  Google Scholar 

  26. Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning, vol 4. Springer

  27. Zheng Y, Comaniciu D (2014) Marginal space learning for medical image analysis. Springer

  28. Mansi T, Georgescu B, Hussan J, Hunter PJ, Kamen A, Comaniciu D (2013) Data-driven reduction of a cardiac myofilament model. Functional Imaging and Modeling of the Heart: 7th International Conference, FIMH 2013, London, UK, June 20–22, 2013 Proceedings 7: Springer; p. 232 – 40

  29. Tøndel K, Indahl UG, Gjuvsland AB, Vik JO, Hunter P, Omholt SW et al (2011) Hierarchical cluster-based partial least squares Regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models. BMC Syst Biol 5(1):1–17

    Article  Google Scholar 

  30. Itu L, Rapaka S, Passerini T, Georgescu B, Schwemmer C, Schoebinger M et al (2016) A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol 121(1):42–52

    Article  PubMed  Google Scholar 

  31. Cho H, Lee JG, Kang SJ, Kim WJ, Choi SY, Ko J et al (2019) Angiography-based machine learning for predicting fractional flow reserve in intermediate coronary artery lesions. J Am Heart Association 8(4):e011685

    Article  Google Scholar 

  32. Cha J-J, Son TD, Ha J, Kim J-S, Hong S-J, Ahn C-M et al (2020) Optical coherence tomography-based machine learning for predicting fractional flow reserve in intermediate coronary stenosis: a feasibility study. Sci Rep 10(1):20421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee J-G, Ko J, Hae H, Kang S-J, Kang D-Y, Lee PH et al (2020) Intravascular ultrasound-based machine learning for predicting fractional flow reserve in intermediate coronary artery lesions. Atherosclerosis 292:171–177

    Article  CAS  PubMed  Google Scholar 

  34. Deng L, Yu D (2014) Deep learning: methods and applications. Found trends® Signal Process 7(3–4):197–387

    Article  Google Scholar 

  35. Wang Y, Yao Q, Kwok JT, Ni LM (2020) Generalizing from a few examples: a survey on few-shot learning. ACM Comput Surv (csur) 53(3):1–34

    Article  Google Scholar 

  36. Jiang X, Zeng Y, **ao S, He S, Ye C, Qi Y et al (2020) Automatic detection of coronary metallic stent struts based on YOLOv3 and R-FCN. Computational and mathematical methods in medicine. ;2020

  37. Wang Z, Jenkins MW, Linderman GC, Bezerra HG, Fu**o Y, Costa MA et al (2015) 3-D stent detection in intravascular OCT using a bayesian network and graph search. IEEE Trans Med Imaging 34(7):1549–1561

    Article  PubMed Central  Google Scholar 

  38. Wu P, Gutiérrez-Chico JL, Tauzin H, Yang W, Li Y, Yu W et al (2020) Automatic stent reconstruction in optical coherence tomography based on a deep convolutional model. Biomedical Opt Express 11(6):3374–3394

    Article  Google Scholar 

  39. Yang G, Mehanna E, Li C, Zhu H, He C, Lu F et al (2021) Stent detection with very thick tissue coverage in intravascular OCT. Biomedical Opt Express 12(12):7500–7516

    Article  Google Scholar 

  40. Lau YS, Tan LK, Chan CK, Chee KH, Liew YM (2021) Automated segmentation of metal stent and bioresorbable vascular scaffold in intravascular optical coherence tomography images using deep learning architectures. Phys Med Biol 66(24):245026

    Article  Google Scholar 

  41. Lee J, Gharaibeh Y, Kolluru C, Zimin VN, Dallan LAP, Kim JN et al (2020) Segmentation of coronary calcified plaque in intravascular OCT images using a two-step deep learning approach. IEEE Access 8:225581–225593

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gharaibeh Y, Prabhu D, Kolluru C, Lee J, Zimin V, Bezerra H et al (2019) Coronary calcification segmentation in intravascular OCT images using deep learning: application to calcification scoring. J Med Imaging 6(4):045002

    Article  Google Scholar 

  43. Abdolmanafi A, Duong L, Ibrahim R, Dahdah N (2021) A deep learning-based model for characterization of atherosclerotic plaque in coronary arteries using optical coherence tomography images. Med Phys 48(7):3511–3524

    Article  PubMed  Google Scholar 

  44. Pociask E, Malinowski KP, Ślęzak M, Jaworek-Korjakowska J, Wojakowski W, Roleder T (2018) Fully automated lumen segmentation method for intracoronary optical coherence tomography. Journal of Healthcare Engineering. ;2018

  45. Jiao C, Xu Z, Bian Q, Forsberg E, Tan Q, Peng X et al (2021) Machine learning classification of origins and varieties of Tetrastigma hemsleyanum using a dual-mode microscopic hyperspectral imager. Spectrochim Acta Part A Mol Biomol Spectrosc 261:120054

    Article  CAS  Google Scholar 

  46. Wang T, Shen F, Deng H, Cai F, Chen S (2022) Smartphone imaging spectrometer for egg/meat freshness monitoring. Anal Methods 14(5):508–517

    Article  CAS  PubMed  Google Scholar 

  47. Kern MJ, Lerman A, Bech J-W, De Bruyne B, Eeckhout E, Fearon WF et al (2006) Physiological assessment of coronary artery disease in the cardiac catheterization laboratory: a scientific statement from the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology. Circulation 114(12):1321–1341

    Article  PubMed  Google Scholar 

  48. Optical Coherence Tomography (OCT) Intravascular Imaging | Abbott

  49. Bradski G (2000) The openCV library. Dr Dobb’s Journal: Software Tools for the Professional Programmer. 25(11):120–123

  50. Patro S, Sahu KK (2015) Normalization: A preprocessing stage. ar**v preprint ar**v:150306462

  51. Hatfaludi C-A, Tache I-A, Ciușdel CF, Puiu A, Stoian D, Itu LM et al (2022) Towards a Deep-Learning Approach for Prediction of Fractional Flow Reserve from Optical Coherence Tomography. Appl Sci 12(14):6964

    Article  CAS  Google Scholar 

  52. Santurkar S, Tsipras D, Ilyas A, Madry A (2018) How does batch normalization help optimization? Advances in neural information processing systems. ;31

  53. Wong T-T (2015) Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recogn 48(9):2839–2846

    Article  Google Scholar 

  54. Zhang Z (2018) Improved adam optimizer for deep neural networks. 2018 IEEE/ACM 26th international symposium on quality of service (IWQoS): Ieee; p. 1–2

  55. Kline DM, Berardi VL (2005) Revisiting squared-error and cross-entropy functions for training neural network classifiers. Neural Comput Appl 14:310–318

    Article  Google Scholar 

  56. Liashchynskyi P, Liashchynskyi P (2019) Grid search, random search, genetic algorithm: a big comparison for NAS. ar**v Preprint ar**v :191206059

  57. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G et al (2019) Pytorch: an imperative style, high-performance deep learning library. Adv Neural Inf Process Syst 32

  58. Hoo ZH, Candlish J, Teare D (2017) What is an ROC curve? BMJ Publishing Group Ltd and the British Association for Accident, pp 357–359

  59. Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17(2):145–151

    Article  Google Scholar 

  60. Unal I (2017) Defining an optimal cut-point value in ROC analysis: an alternative approach. Computational and mathematical methods in medicine. ;2017

  61. Youden WJ (1950) Index for rating diagnostic tests. Cancer 3(1):32–35

    Article  CAS  PubMed  Google Scholar 

  62. Lakshminarayanan B, Pritzel A, Blundell C (2017) Simple and scalable predictive uncertainty estimation using deep ensembles. Adv Neural Inf Process Syst. ;30

  63. Bote-Curiel L, Munoz-Romero S, Gerrero-Curieses A, Rojo-Álvarez JL (2019) Deep learning and big data in healthcare: a double review for critical beginners. Appl Sci 9(11):2331

    Article  Google Scholar 

  64. Demir-Kavuk O, Kamada M, Akutsu T, Knapp E-W (2011) Prediction using step-wise L1, L2 regularization and feature selection for small data sets with large number of features. BMC Bioinformatics 12:1–10

    Article  Google Scholar 

  65. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    Google Scholar 

  66. Wong SC, Gatt A, Stamatescu V, McDonnell MD (2016) Understanding data augmentation for classification: when to warp? 2016 international conference on digital image computing: techniques and applications (DICTA): IEEE; p. 1–6

  67. Kumamaru KK, Fujimoto S, Otsuka Y, Kawasaki T, Kawaguchi Y, Kato E et al (2020) Diagnostic accuracy of 3D deep-learning-based fully automated estimation of patient-level minimum fractional flow reserve from coronary computed tomography angiography. Eur Heart Journal-Cardiovascular Imaging 21(4):437–445

    Google Scholar 

  68. Zreik M, van Hamersvelt RW, Khalili N, Wolterink JM, Voskuil M, Viergever MA et al (2019) Deep learning analysis of coronary arteries in cardiac CT angiography for detection of patients requiring invasive coronary angiography. IEEE Trans Med Imaging 39(5):1545–1557

    Article  PubMed  Google Scholar 

  69. Lyras KG, Lee J (2021) An improved reduced-order model for pressure drop across arterial stenoses. PLoS ONE 16(10):e0258047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research leading to these results has received funding from the EEA Grants 2014–2021, under Project contract no. 33/2021. This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CCCDI – UEFISCDI, project number ERANET-PERMED-PROGRESS, within PNCDI III.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, C.-A.H., I.-A.T., and L.M.I.; methodology, C.-A.H., C.F.C., I.-A.T., and A.P.; software, C.-A.H., A.P., and D.S.; validation, L.C., N.-M.P.-F., V.B., and A.S.-U.; formal analysis, C.F.C.; investigation, L.C., N.-M.P.-F., and V.B.; resources, I.-A.T. and L.M.I.; data curation, I.-A.T. and L.C.; writing—original draft preparation, C.-A.H., I.-A.T., and L.M.I.; writing—review and editing, C.F.C.; visualization, C.-A.H. and L.M.I.; supervision, L.M.I. and A.S.-U.; project administration, L.M.I. and A.S.-U.; funding acquisition, L.M.I. and A.S.-U. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Cosmin-Andrei Hatfaludi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatfaludi, CA., Tache, IA., Ciusdel, CF. et al. Co-registered optical coherence tomography and X-ray angiography for the prediction of fractional flow reserve. Int J Cardiovasc Imaging 40, 1029–1039 (2024). https://doi.org/10.1007/s10554-024-03069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-024-03069-z

Keywords

Navigation