Log in

Growth Features of Gas Hydrate Films at Interface of Liquid Carbon Dioxide with Water and Sodium Dodecyl Sulfate Solution in Teflon and Steel Cuvettes

  • RESEARCH
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

The growth features of a hydrate film at the interface between liquid carbon dioxide and pure water and sodium dodecyl sulfate solution were studied. It was found in all cases that in a Teflon cell a hydrate film is formed on the contact surface of the liquid phases, after which no visible changes are observed for an indefinitely long time. In experiments with pure water in a steel cell after the water-CO2 surface is covered with hydrate the hydrate film is slowly deformed as a result of growth along the line of contact between the hydrate and the cell wall. In experiments with a solution of sodium dodecyl sulfate the deformation of the hydrate film is much more pronounced, and the degree of conversion of the water into hydrate is increased significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. A. Yu. Manakov, A. S. Stoporev, Uspekhi Khimii, 90(5), 566-600 (2021).

    Article  Google Scholar 

  2. L. P. Liu, Z. Sun, L. Zhang, et. al., Acta Geol. Sin. Engl., 93(3), 731-755 (2019).

    Article  CAS  Google Scholar 

  3. J. Carroll, Natural Gas Hydrates. A Guide for Engineers [Russian translation] (Eds. A. N. Zolotous, M. Ya. Bchinskii), ZAO, Moscow (2007), 316 pp..

  4. H. P. Veluswamy, A. Kumar, Y. Seo, et. al., Appl. Energy, 216, 262-285 (2018).

    Article  CAS  Google Scholar 

  5. C.-G. Xu, Y.-S. Yu, W.-J. **e, et. al., Appl. Energy, 255, 113791 (2019).

    Article  CAS  Google Scholar 

  6. M. S. Sergeeva, A. N. Petukhov, D. N. Shablykin, et al., Zhurnal Fizicheskoi Khimii, 96(1), 39-46 (2022).

    Google Scholar 

  7. J. Luo, Y. **e, M. Z. Hou, et. al., Energy Reviews, 2(1), 100016 (2023).

    Article  Google Scholar 

  8. M. Bui, C. S. Adjiman, A. Bardow, et. al., Energy Environ. Sci., 11, 1062-1176 (2018).

    Article  CAS  Google Scholar 

  9. S. Nanda, S. N. Reddy, S. K. Mitra, et. al., Energy Sci. Eng., 4, 99-122 (2016).

    Article  CAS  Google Scholar 

  10. X. Wang, F. Zhang, W. Lipinski, Appl. Energy, 269, 114928 (2020).

    Article  CAS  Google Scholar 

  11. B. Tohidi, J. Yang, M. Salehabadi, et. al., Environ. Sci. Technol., 44, 1509-1514 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. M. M. Cote, J. F. Wright, Preliminary Assessment of the Geological Potential for Sequestration of CO2 as Gas Hydrate in the Alberta Portion of the Western Canada Sedimentary Basin: Natural Resources Canada, Society of Petroleum Engineers (2013).

  13. X. M. Zhang, J. P. Li, J. X. Wang, et. al., Int. J. Green Energ., 18(7), 1-10 (2021).

    Article  CAS  Google Scholar 

  14. C. Y. Sun, B. Z. Peng, A. Dandekar, et. al., Ann. Rep. Prog. Chem., Sect. C: Phys. Chem., 106, 77-100 (2010).

  15. V. A. Vlasov, Heat and Mass Transfer, 55, 3537-3545 (2019).

    Article  CAS  Google Scholar 

  16. T. Uchida, T. Ebinuma, J. Kawabata, et. al., J. Cryst. Growth, 204(3), 348-356 (1999).

    Article  CAS  Google Scholar 

  17. T. Uchida, I. Y. Ikeda, S. Takeya, et. al., J. Cryst. Growth, 237-239, 383-387 (2002).

    Article  Google Scholar 

  18. B. Z. Peng, A. Dandekar, C. Y. Sun, et. al., J. Phys. Chem. B, 111(43), 12485-12493 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. D. Daniel-David, F. Guerton., C. Dicharry, et. al., Chem. Eng. Sci., 132(18), 118-127 (2015).

  20. V. P. Melnikov, A. N. Nesterov, A. M. Reshetnikov, et. al., Chem. Eng. Sci., 66, 73-77 (2011).

    Article  CAS  Google Scholar 

  21. T. P. Adamova, S. S. Skiba, A. Y. Manakov, S. Y. Misyura, Chinese J. Chem. Eng., 56, 266-272 (2023).

    Google Scholar 

  22. Y. Abe, X. Ma, T. Yanai, et. al., AIChE J, 62(11), 4078-4089 (2016).

    Article  CAS  Google Scholar 

  23. O. B. Kutergin, V. P. Melnikov, A. N. Nesterov, Doklady Akademii Nauk, 323(3). 549-553 (1992).

    CAS  Google Scholar 

  24. Q. Nasir, H. Suleman, Y. A. Elsheikh, J. Nat. Gas Sci. Eng., 76, 103211 (2020).

    Article  CAS  Google Scholar 

  25. E. Chaturvedi, S. Laik, A. Mandal, Chinese J. Chem. Eng., 32, 1-16 (2021).

    CAS  Google Scholar 

  26. Z. **a, Q. Zhao, Z. Chen, et. al., J. Nat. Gas Sci. Eng., 101, 104528 (2022).

    Article  CAS  Google Scholar 

  27. N. S. Molokitina, A. N. Nesterov, L. S. Podenko, et. al., Fuel, 235, 1400-1411 (2019).

    Article  CAS  Google Scholar 

  28. A. N. Nesterov, A. M. Reshetnikov, Chem. Eng. J., 378, 122165 (2019).

    Article  CAS  Google Scholar 

  29. A. Kumar, T. Sakpal, P. Linga, et. al., Fuel, 105, 664-671 (2013).

    Article  CAS  Google Scholar 

  30. P. M. Naullage, A. A. Bertolazzo, V. Molinero, ACS Central Science, 5, 428-439 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. D. A. Strukov, T. P. Adamova, A. Y. Manakov, Cryst. Growth Des., 23(1), 354-361 (2023).

    Article  CAS  Google Scholar 

  32. A. S. Stoporev, T. P. Adamova, A. Y. Manakov, Cryst. Growth Des., 20(3). 1927-1934 (2020).

    Article  CAS  Google Scholar 

  33. H. Liang, D. Guan, Y. Liu, et. al., J. Colloid Interf. Sci., 626, 1003-1014 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The investigation was supported by the Russian Science Foundation, grant No. 23-29-00830, https://rscf.ru/project/23-29-00830/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Sagidullin.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 4, pp. 50–56, July – August, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagidullin, A.K., Manakov, A.Y. Growth Features of Gas Hydrate Films at Interface of Liquid Carbon Dioxide with Water and Sodium Dodecyl Sulfate Solution in Teflon and Steel Cuvettes. Chem Technol Fuels Oils 59, 718–725 (2023). https://doi.org/10.1007/s10553-023-01575-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-023-01575-9

Keywords

Navigation