Log in

Abiotic Degradation of Petroleum Asphaltenes

  • REVIEWS
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

The literature data on the abiotic degradation of asphaltenes are the subject of a systematic review. Such degradation may proceed under natural conditions. In particular, the action of sunlight, especially, ultraviolet radiation, initiates photolysis and photooxidation in asphaltenes leading to an increase in their oxygen content, thereby shifting the hydrophilic-lipophilic balance toward hydrophilicity and increased access of the reaction products for subsequent biotic degradation by microorganisms. The action of ionizing radiation does not lead to a significant change in the molecular composition of asphaltenes since they are highly inert to radiation. An exception is found for the irradiation of asphaltenes by intense electron beams, leading to their considerable degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Bunger and N. C. Li, Chemistry of Asphaltenes, American Chemical Society, Washington (1981).

  2. G. Pineda-Flores and A. M. Mesta-Howard, Revista Latinoamericana de Microbiologia, 43, No. 3, 143-150 (2001).

    CAS  PubMed  Google Scholar 

  3. T. Tavasoli, S. M. Mousavi, S. A. Shojaosadati, et al., Fuel, 93, 142-148 (2012).

    Article  Google Scholar 

  4. M. Mohammadi-Sichani, M. M. Assadi, A. Farazmand, et al., International Journal of Environmental Science and Technology, 16, No. 5, 2313-2320 (2019).

    Article  CAS  Google Scholar 

  5. E. L. Hernandez-Lopez, M. Ayala, and R. Vazquez-Duhalt , Petroleum Science and Technology, 33, No. 9, 1017-1029 (2015).

    Article  CAS  Google Scholar 

  6. J. Xue, Y. Yu, Y. Bai, et al., Current Microbiology, 71, No. 2, 220-228 (2015).

    Article  CAS  Google Scholar 

  7. S. M. Davoodi, S. Miri, M. Taheran, et al., Environmental Science & Technology, 54, No. 4, 2054-2067 (2020).

    Article  CAS  Google Scholar 

  8. S. Iraji and S. Ayatollahi, Journal of Petroleum Exploration and Production Technology, 9, No. 2, 1413-1422 (2019).

    Article  CAS  Google Scholar 

  9. Y. Shahebrahimi, A. Fazlali, H. Motamedi, et al., ACS Omega, 5, No. 7, 3131-3143 (2020).

    Article  CAS  Google Scholar 

  10. D. L. Plata, C. M. Sharpless, and C. M. Reddy, Environmental Sciences and Technology, 42, No. 7, 2432-2438 (2008).

    Article  CAS  Google Scholar 

  11. J. Thompson, L. Pietsch, M. Phillips, et al., Environmental Forensics, 21, No. 2, 212-222 (2020).

    Article  CAS  Google Scholar 

  12. S. F. Akhmedbekova, Chemistry and Technology of Fuels and Oils, 48, No. 2, 149-155 (2012).

    Article  CAS  Google Scholar 

  13. S. F. Akhmedbekova, C. K. Salmanova, E. B. Zeinalov, et al., Petroleum Chemistry, 49, No. 3, 235-239 (2009).

    Article  Google Scholar 

  14. X. Tang and D. Li, Langmuir, 27, No. 3, 1218-1223 (2011).

    Article  CAS  Google Scholar 

  15. M. L. D. O. Pereira, D. Grasseschi, H. E. Toma, et al., Energy & Fuels, 32, No. 3, 2673-2680 (2017).

    Article  Google Scholar 

  16. C. L. B. Guedes, E. Di Mauro, V. Antunes, et al., Marine Chemistry, 84, Nos. 1-2, 105-112 (2003).

    Article  Google Scholar 

  17. A. G. Banja, M. D. F. A. D. S. Araujo, M. D. M. R. de Castro, REM International Engineering Journal, 71, No. 2, 225-233 (2018).

    Article  Google Scholar 

  18. C. K. Salmanova, S. F. Akhmedbekova, A. P. Mamedov, et al., Chemistry and Technology of Fuels and Oils, 43, No. 5, 315-421 (2007).

    Article  Google Scholar 

  19. P. F. Pesarini, R. G. S. de Souza, R. J. Corrêa, et al., Journal of Photochemistry and Photobiology A: Chemistry, 214, No. 1, 48-53 (2010).

    Article  CAS  Google Scholar 

  20. T. Pernyeszi and I. Dekany, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 230, Nos. 1-3, 191-199 (2003).

    Article  CAS  Google Scholar 

  21. V. F. C. Lins, M. F. A. S. Araujo, M. I. Yoshida, et al., Fuel, 87, Nos. 15-16, 3254-3261 (2008).

    Article  CAS  Google Scholar 

  22. C. L. Guedes, E. De Mauro, A. De Campos, et al., International Journal of Photoenergy, 1-6 (2006).

  23. I. V. Vasil’eva, N. I. Yakimova, S. V. Myakin, et al., Izvestiya Peterburgskogo Universiteta Putei Soobshcheniya, 2, 109-115 (2006).

    Google Scholar 

  24. E. A. Podzorova, A. A. Pikaev, A. K. Buryak, et al., High Energy Chemistry, 35, No. 2, 61-68 (2001).

    Article  CAS  Google Scholar 

  25. H. J. Wang, W. Z. Zhao, Y. W. Cai, et al., IOP Conference Series: Earth and Environmental Science, 360, No. 1, 012037 (2019).

    Article  Google Scholar 

  26. N. Guliyeva, I. Mustafayev, S. Mamedova, et al., J. Chem., 9, 357-362 (2015).

    CAS  Google Scholar 

  27. M. Mouazen, A. Poulesquen, F. Bart, et al., Fuel Processing Technology, 114, 144-153 (2013).

    Article  CAS  Google Scholar 

  28. N. K. Gulieva, G M. Gatamkhanova, and I. I. Mustafayev, High Energy Chemistry, 54, No. 5, 336-341 (2020).

    Article  CAS  Google Scholar 

  29. M. Alfi, M. A. Barrufet, R. G. Moreira, et al., Fuel, 154, 152-160 (2015).

    Article  CAS  Google Scholar 

Download references

This work was carried out in the framework of a state project of the Federal Science Center, Kazan Science Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Shabalin.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 5, pp. 53–56, September-October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabalin, K.V., Foss, L.E., Musin, L.I. et al. Abiotic Degradation of Petroleum Asphaltenes. Chem Technol Fuels Oils 57, 792–795 (2021). https://doi.org/10.1007/s10553-021-01308-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-021-01308-w

Keywords

Navigation