Log in

Combination of monensin and erlotinib synergistically inhibited the growth and cancer stem cell properties of triple-negative breast cancer by simultaneously inhibiting EGFR and PI3K signaling pathways

  • Research
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background

Cancer stem cells (CSCs) in triple-negative breast cancer (TNBC) are recognized as a highly challenging subset of cells, renowned for their heightened propensity for relapse and unfavorable prognosis. Monensin, an ionophoric antibiotic, has been reported to exhibit significant therapeutic efficacy against various cancers, especially CSCs. Erlotinib is classified as one of the EGFR-TKIs and has been previously identified as a promising therapeutic target for TNBC. Our research aims to assess the effectiveness of combination of monensin and erlotinib as a potential treatment strategy for TNBC.

Methods

The combination of monensin and erlotinib was assessed for its potential anticancer activity through various in vitro assays, including cytotoxicity assay, colony formation assay, wound healing assay, transwell assay, mammosphere formation assay, and proportion of CSCs assay. Additionally, an in vivo study using tumor-bearing nude mice was conducted to evaluate the inhibitory effect of the monensin and erlotinib combination on tumor growth.

Results

The results indicated that combination of monensin with erlotinib synergistically inhibited cell proliferation, the migration rate, the invasion ability and decreased the CSCs proportion, and CSC markers SOX2 and CD133 in vivo and in vitro. Furthermore, the primary proteins involved in the signaling pathways of the EGFR/ERK and PI3K/AKT are simultaneously inhibited by the combination treatment of monensin and erlotinib in vivo and in vitro.

Conclusions

The simultaneous inhibition of the EGFR/ERK and PI3K/AKT/mTOR signaling pathways by the combination of monensin and erlotinib exhibited a synergistic effect on suppressing tumor proliferation and cancer cell stemness in TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

The datasets of this study are available on request to the corresponding author.

References

  1. Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, Liu B (2022) Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol 15(1):44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zubair M, Wang S, Ali N (2020) Advanced approaches to breast cancer classification and diagnosis. Front Pharmacol 11:632079

    Article  CAS  PubMed  Google Scholar 

  3. Bianchini G, De Angelis C, Licata L, Gianni L (2022) Treatment landscape of triple-negative breast cancer - expanded options, evolving needs. Nat Rev Clin Oncol 19(2):91–113

    Article  CAS  PubMed  Google Scholar 

  4. Lyons TG (2019) Targeted therapies for triple-negative breast cancer. Curr Treat Options Oncol 20(11):82

    Article  PubMed  Google Scholar 

  5. Xu J, Yang X, Deng Q, Yang C, Wang D, Jiang G, Yao X, He X, Ding J, Qiang J et al (2021) TEM8 marks neovasculogenic tumor-initiating cells in triple-negative breast cancer. Nat Commun 12(1):4413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luo M, Shang L, Brooks MD, Jiagge E, Zhu Y, Buschhaus JM, Conley S, Fath MA, Davis A, Gheordunescu E et al (2018) Targeting breast cancer stem cell state equilibrium through modulation of redox signaling. Cell Metab 28(1):69–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tominaga K, Minato H, Murayama T, Sasahara A, Nishimura T, Kiyokawa E, Kanauchi H, Shimizu S, Sato A, Nishioka K et al (2019) Semaphorin signaling via MICAL3 induces symmetric cell division to expand breast cancer stem-like cells. Proc Natl Acad Sci USA 116(2):625–630

    Article  CAS  PubMed  Google Scholar 

  8. Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S, Kossatz-Boehlert U (2020) Cancer stem cells-origins and biomarkers: perspectives for targeted personalized therapies. Front Immunol 11:1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fultang N, Chakraborty M, Peethambaran B (2021) Regulation of cancer stem cells in triple negative breast cancer. Cancer Drug Resist (Alhambra, Calif) 4(2):321–342

    CAS  Google Scholar 

  10. Barzaman K, Karami J, Zarei Z, Hosseinzadeh A, Kazemi MH, Moradi-Kalbolandi S, Safari E, Farahmand L (2020) Breast cancer: biology, biomarkers, and treatments. Int Immunopharmacol 84:106535

    Article  CAS  PubMed  Google Scholar 

  11. Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B, Cheng SY (2020) Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics 10(19):8721–8743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hampton KK, Craven RJ (2014) Pathways driving the endocytosis of mutant and wild-type EGFR in cancer. Oncoscience 1(8):504–512

    Article  PubMed  PubMed Central  Google Scholar 

  13. Alanazi IO, Khan Z (2016) Understanding EGFR signaling in breast cancer and breast cancer stem cells: overexpression and therapeutic implications. Asian Pac J Cancer Prevent 17(2):445–453

    Article  Google Scholar 

  14. Liu X, Adorno-Cruz V, Chang YF, Jia Y, Kawaguchi M, Dashzeveg NK, Taftaf R, Ramos EK, Schuster EJ, El-Shennawy L et al (2021) EGFR inhibition blocks cancer stem cell clustering and lung metastasis of triple negative breast cancer. Theranostics 11(13):6632–6643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Truong VN, Nguyen YT, Cho SK (2021) Ampelopsin suppresses stem cell properties accompanied by attenuation of oxidative phosphorylation in chemo- and radio-resistant MDA-MB-231 breast cancer cells. Pharmaceuticals (Basel, Switzerland) 14:8

    Google Scholar 

  16. Cho SY (2019) Identification of ERBB pathway-activated cells in triple-negative breast cancer. Genom Inf 17(1):e3

    Article  Google Scholar 

  17. Sukumar J, Gast K, Quiroga D, Lustberg M, Williams N (2021) Triple-negative breast cancer: promising prognostic biomarkers currently in development. Expert Rev Anticancer Ther 21(2):135–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. López-Knowles E, O’Toole SA, McNeil CM, Millar EK, Qiu MR, Crea P, Daly RJ, Musgrove EA, Sutherland RL (2010) PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. Int J Cancer 126(5):1121–1131

    Article  PubMed  Google Scholar 

  19. Pascual J, Turner NC (2019) Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann Oncol 30(7):1051–1060

    Article  CAS  PubMed  Google Scholar 

  20. Alzahrani AS (2019) PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside. Semin Cancer Biol 59:125–132

    Article  CAS  PubMed  Google Scholar 

  21. LoRusso PM (2016) Inhibition of the PI3K/AKT/mTOR pathway in solid tumors. J Clin Oncol 34(31):3803–3815

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ortega MA, Fraile-Martínez O, Asúnsolo Á, Buján J, García-Honduvilla N, Coca S (2020) Signal transduction pathways in breast cancer: the important role of PI3K/Akt/mTOR. J Oncol 2020:9258396

    Article  PubMed  PubMed Central  Google Scholar 

  23. King D, Yeomanson D, Bryant HE (2015) PI3King the lock: targeting the PI3K/Akt/mTOR pathway as a novel therapeutic strategy in neuroblastoma. J Pediatr Hematol Oncol 37(4):245–251

    Article  CAS  PubMed  Google Scholar 

  24. Wali VB, Langdon CG, Held MA, Platt JT, Patwardhan GA, Safonov A, Aktas B, Pusztai L, Stern DF, Hatzis C (2017) Systematic drug screening identifies tractable targeted combination therapies in triple-negative breast cancer. Can Res 77(2):566–578

    Article  CAS  Google Scholar 

  25. Tumova L, Pombinho AR, Vojtechova M, Stancikova J, Gradl D, Krausova M, Sloncova E, Horazna M, Kriz V, Machonova O et al (2014) Monensin inhibits canonical Wnt signaling in human colorectal cancer cells and suppresses tumor growth in multiple intestinal neoplasia mice. Mol Cancer Ther 13(4):812–822

    Article  CAS  PubMed  Google Scholar 

  26. Deng Y, Zhang J, Wang Z, Yan Z, Qiao M, Ye J, Wei Q, Wang J, Wang X, Zhao L et al (2015) Antibiotic monensin synergizes with EGFR inhibitors and oxaliplatin to suppress the proliferation of human ovarian cancer cells. Sci Rep 5:17523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ketola K, Vainio P, Fey V, Kallioniemi O, Il** K (2010) Monensin is a potent inducer of oxidative stress and inhibitor of androgen signaling leading to apoptosis in prostate cancer cells. Mol Cancer Ther 9(12):3175–3185

    Article  CAS  PubMed  Google Scholar 

  28. Pádua D, Barros R, Amaral AL, Mesquita P, Freire AF, Sousa M, Maia AF, Caiado I, Fernandes H, Pombinho A et al (2020) A SOX2 reporter system identifies gastric cancer stem-like cells sensitive to monensin. Cancers 12:2

    Article  Google Scholar 

  29. Marjanović M, Mikecin Dražić AM, Mioč M, Paradžik M, Kliček F, Novokmet M, Lauc G, Kralj M (2023) Salinomycin disturbs Golgi function and specifically affects cells in epithelial-to-mesenchymal transition. J Cell Sci 136:17

    Article  Google Scholar 

  30. **n H, Li J, Zhang H, Li Y, Zeng S, Wang Z, Zhang Z, Deng F (2019) Monensin may inhibit melanoma by regulating the selection between differentiation and stemness of melanoma stem cells. PeerJ 7:e7354

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dayekh K, Johnson-Obaseki S, Corsten M, Villeneuve PJ, Sekhon HS, Weberpals JI, Dimitroulakos J (2014) Monensin inhibits epidermal growth factor receptor trafficking and activation: synergistic cytotoxicity in combination with EGFR inhibitors. Mol Cancer Ther 13(11):2559–2571

    Article  CAS  PubMed  Google Scholar 

  32. Wang X, Wu X, Zhang Z, Ma C, Wu T, Tang S, Zeng Z, Huang S, Gong C, Yuan C et al (2018) Monensin inhibits cell proliferation and tumor growth of chemo-resistant pancreatic cancer cells by targeting the EGFR signaling pathway. Sci Rep 8(1):17914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu X, Liu F, Zeng L, He F, Zhang R, Yan S, Zeng Z, Shu Y, Zhao C, Wu X et al (2018) Niclosamide exhibits potent anticancer activity and synergizes with sorafenib in human renal cell cancer cells. Cell Physiol Biochem 47(3):957–971

    Article  CAS  PubMed  Google Scholar 

  34. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M, Fitzgibbons P et al (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31(31):3997–4013

    Article  PubMed  Google Scholar 

  35. Bryan BB, Schnitt SJ, Collins LC: Ductal carcinoma in situ with basal-like phenotype: a possible precursor to invasive basal-like breast cancer. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 2006, 19(5):617–621.

  36. ** LL, Lu HJ, Shao JK, Wang Y, Lu SP, Huang BF, Hu GN, ** HC, Wang CQ (2023) Relevance and mechanism of STAT3/miR-221-3p/Fascin-1 axis in EGFR TKI resistance of triple-negative breast cancer. Mol Cell Biochem 1:1

    Google Scholar 

  37. Alkhatib H, Conage-Pough J, Roy Chowdhury S, Shian D, Zaid D, Rubinstein AM, Sonnenblick A, Peretz-Yablonsky T, Granit A, Carmon E et al (2024) Patient-specific signaling signatures predict optimal therapeutic combinations for triple negative breast cancer. Mol Cancer 23(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shan F, Shao Z, Jiang S, Cheng Z (2016) Erlotinib induces the human non-small-cell lung cancer cells apoptosis via activating ROS-dependent JNK pathways. Cancer Med 5(11):3166–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ji XL, He M (2019) Sodium cantharidate targets STAT3 and abrogates EGFR inhibitor resistance in osteosarcoma. Aging 11(15):5848–5863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. El Guerrab A, Bamdad M, Bignon YJ, Penault-Llorca F, Aubel C (2020) Co-targeting EGFR and mTOR with gefitinib and everolimus in triple-negative breast cancer cells. Sci Rep 10(1):6367

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vanneste M, Huang Q, Li M, Moose D, Zhao L, Stamnes MA, Schultz M, Wu M, Henry MD (2019) High content screening identifies monensin as an EMT-selective cytotoxic compound. Sci Rep 9(1):1200

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gu J, Huang L, Zhang Y (2020) Monensin inhibits proliferation, migration, and promotes apoptosis of breast cancer cells via downregulating UBA2. Drug Dev Res 81(6):745–753

    Article  CAS  PubMed  Google Scholar 

  43. Li Y, Sun Q, Chen S, Yu X, **g H (2022) Monensin inhibits anaplastic thyroid cancer via disrupting mitochondrial respiration and AMPK/mTOR signaling. Anticancer Agents Med Chem 22(14):2539–2547

    Article  CAS  PubMed  Google Scholar 

  44. Serter Kocoglu S, Secme M, Oy C, Korkusuz G, Elmas L (2023) Monensin, an antibiotic isolated from streptomyces cinnamonensis, regulates human neuroblastoma cell proliferation via the PI3K/AKT signaling pathway and acts synergistically with Rapamycin. Antibiotics (Basel, Switzerland) 12:3

    Google Scholar 

  45. Mioč M, Telbisz Á, Radman K, Bertoša B, Šumanovac T, Sarkadi B, Kralj M (2022) Interaction of crown ethers with the ABCG2 transporter and their implication for multidrug resistance reversal. Histochem Cell Biol 158(3):261–277

    Article  PubMed  Google Scholar 

  46. Asleh K, Riaz N, Nielsen TO (2022) Heterogeneity of triple negative breast cancer: current advances in subty** and treatment implications. J Exp Clin Cancer Res 41(1):265

    Article  PubMed  PubMed Central  Google Scholar 

  47. Quaglino E, Conti L, Cavallo F (2020) Breast cancer stem cell antigens as targets for immunotherapy. Semin Immunol 47:101386

    Article  CAS  PubMed  Google Scholar 

  48. Zeng X, Liu C, Yao J, Wan H, Wan G, Li Y, Chen N (2021) Breast cancer stem cells, heterogeneity, targeting therapies and therapeutic implications. Pharmacol Res 163:105320

    Article  CAS  PubMed  Google Scholar 

  49. Zhang L, Chen W, Liu S, Chen C (2023) Targeting breast cancer stem cells. Int J Biol Sci 19(2):552–570

    Article  CAS  PubMed  Google Scholar 

  50. Pavlopoulou A, Oktay Y, Vougas K, Louka M, Vorgias CE, Georgakilas AG (2016) Determinants of resistance to chemotherapy and ionizing radiation in breast cancer stem cells. Cancer Lett 380(2):485–493

    Article  CAS  PubMed  Google Scholar 

  51. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, Kim SY, Wardwell L, Tamayo P, Gat-Viks I et al (2009) SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet 41(11):1238–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pham DL, Scheble V, Bareiss P, Fischer A, Beschorner C, Adam A, Bachmann C, Neubauer H, Boesmueller H, Kanz L et al (2013) SOX2 expression and prognostic significance in ovarian carcinoma. Int J Gynecol Pathol 32(4):358–367

    Article  CAS  PubMed  Google Scholar 

  53. Schröck A, Bode M, Göke FJ, Bareiss PM, Schairer R, Wang H, Weichert W, Franzen A, Kirsten R, van Bremen T et al (2014) Expression and role of the embryonic protein SOX2 in head and neck squamous cell carcinoma. Carcinogenesis 35(7):1636–1642

    Article  PubMed  Google Scholar 

  54. Leis O, Eguiara A, Lopez-Arribillaga E, Alberdi MJ, Hernandez-Garcia S, Elorriaga K, Pandiella A, Rezola R, Martin AG (2012) Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene 31(11):1354–1365

    Article  CAS  PubMed  Google Scholar 

  55. Yu JM, Sun W, Wang ZH, Liang X, Hua F, Li K, Lv XX, Zhang XW, Liu YY, Yu JJ et al (2019) TRIB3 supports breast cancer stemness by suppressing FOXO1 degradation and enhancing SOX2 transcription. Nat Commun 10(1):5720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bareiss PM, Paczulla A, Wang H, Schairer R, Wiehr S, Kohlhofer U, Rothfuss OC, Fischer A, Perner S, Staebler A et al (2013) SOX2 expression associates with stem cell state in human ovarian carcinoma. Can Res 73(17):5544–5555

    Article  CAS  Google Scholar 

  57. ** J, He J, Li X, Ni X, ** X (2023) The role of ubiquitination and deubiquitination in PI3K/AKT/mTOR pathway: a potential target for cancer therapy. Gene 889:147807

    Article  CAS  PubMed  Google Scholar 

  58. Li X, Tang Y, Yu F, Sun Y, Huang F, Chen Y, Yang Z, Ding G (2018) Inhibition of prostate cancer DU-145 cells proliferation by Anthopleura anjunae Oligopeptide (YVPGP) via PI3K/AKT/mTOR signaling pathway. Mar Drugs 16:9

    Article  Google Scholar 

  59. Goyal A, Wang Y, Graham MM, Doseff AI, Bhatt NY, Marsh CB (2002) Monocyte survival factors induce Akt activation and suppress caspase-3. Am J Respir Cell Mol Biol 26(2):224–230

    Article  CAS  PubMed  Google Scholar 

  60. Zhang H, Xu HL, Wang YC, Lu ZY, Yu XF, Sui DY (2018) 20(S)-protopanaxadiol-induced apoptosis in MCF-7 breast cancer cell line through the inhibition of PI3K/AKT/mTOR signaling pathway. Int J Mol Sci 19:4

    Google Scholar 

  61. Serter Kocoglu S, Sunay FB, Akkaya PN (2023) Effects of Monensin and Rapamycin combination therapy on tumor growth and apoptosis in a xenograft mouse model of neuroblastoma. Antibiotics (Basel, Switzerland) 12:6

    Google Scholar 

Download references

Funding

This work was supported by the grants from the National Natural Science Foundation of China (32172918&31902326), the Fundamental Research Funds for the Central Universities (KYGD202002), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

TF: supervised and designed the research, provided expertise to the bioinformatics and laboratory concepts, and wrote the paper. SH: assisted with the cytotoxicity assays and WB studies, analyzed and interpreted the data. XS: assisted with the colony formation assay and cell apoptosis assay, wrote the paper. JW: assisted with wound healing assay, transwell assay, and mammosphere formation assay. RZ: assisted with animal experiment. SY: assisted with IHC. SJ: supervised and designed the research. DG: wrote the main manuscript text. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Shanxiang Jiang or Dawei Guo.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

Not applicable. All data in this study are publicly available and no permission was required to perform this study.

Consent to participate

Not applicable. All data in this study are publicly available and no permission was required to perform this study.

Consent for publication

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, T., Hu, S., Song, X. et al. Combination of monensin and erlotinib synergistically inhibited the growth and cancer stem cell properties of triple-negative breast cancer by simultaneously inhibiting EGFR and PI3K signaling pathways. Breast Cancer Res Treat (2024). https://doi.org/10.1007/s10549-024-07374-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10549-024-07374-y

Keywords

Navigation