Log in

Analyzing the Auditory Scene: Neurophysiologic Evidence of a Dissociation Between Detection of Regularity and Detection of Change

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Detecting regularity and change in the environment is crucial for survival, as it enables making predictions about the world and informing goal-directed behavior. In the auditory modality, the detection of regularity involves segregating incoming sounds into distinct perceptual objects (stream segregation). The detection of change from this within-stream regularity is associated with the mismatch negativity, a component of auditory event-related brain potentials (ERPs). A central unanswered question is how the detection of regularity and the detection of change are interrelated, and whether attention affects the former, the latter, or both. Here we show that the detection of regularity and the detection of change can be empirically dissociated, and that attention modulates the detection of change without precluding the detection of regularity, and the perceptual organization of the auditory background into distinct streams. By applying frequency spectra analysis on the EEG of subjects engaged in a selective listening task, we found distinct peaks of ERP synchronization, corresponding to the rhythm of the frequency streams, independently of whether the stream was attended or ignored. Our results provide direct neurophysiological evidence of regularity detection in the auditory background, and show that it can occur independently of change detection and in the absence of attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. ABS refers to computing absolute values, FFT to computing a fast Fourier transform, and MEAN to the average of the ERPs.

References

  • Alho K (1992) Selective attention in auditory processing as reflected by event-related brain potentials. Psychophysiology 29:247–263

    Article  CAS  PubMed  Google Scholar 

  • Bidet-Caulet A, Fischer C, Besle J, Aguera P-E, Giard M-H, Bertrand O (2007) Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex. J Neurosci 27(35):9252–9261

    Article  CAS  PubMed  Google Scholar 

  • Bregman AS (1978) Auditory streaming is cumulative. J Exp Psychol Hum Percept Perform 4:380–387

    Article  CAS  PubMed  Google Scholar 

  • Bregman A (1990) Auditory scene analysis: the perceptual organization of sound. The MIT Press, Cambridge

    Google Scholar 

  • Bregman AS, Campbell J (1971) Primary auditory stream segregation and perception of order in rapid sequences of tones. J Exp Psychol 89:244–249

    Article  CAS  PubMed  Google Scholar 

  • Carlyon RP, Cusack R, Foxton JM, Robertson IH (2001) Effects of attention and unilateral neglect on auditory stream segregation. J Exp Psychol Hum Percept Perform 27:115–127

    Article  CAS  PubMed  Google Scholar 

  • Cherry EC (1953) Some experiments on the recognition of speech, with one and two ears. J Acoust Soc Am 25:975–979

    Article  Google Scholar 

  • Demany L (1982) Auditory stream segregation in infancy. Infant Behav Dev 5:261–276

    Article  Google Scholar 

  • Draganova R, Ross B, Borgmann C, Pantev C (2002) Auditory cortical response patterns to multiple rhythms of AM sound. Ear Hear 23:254–265

    Article  PubMed  Google Scholar 

  • Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1:54–75

    Article  Google Scholar 

  • Elhilali M, **ang J, Shamma SA, Simon JZ (2009) Interaction between attention and bottom-up saliency mediates the representation of foreground and Background in an auditory scene. PLoS Biol 7(6):e1000129

    Article  PubMed Central  PubMed  Google Scholar 

  • Fritz J, Shamma S, Elhilali M, Klein D (2003) Rapid task-related plasticity of spectro-temporal receptive fields in primary auditory cortex. Nat Neurosci 6:1216–1223

    Article  CAS  PubMed  Google Scholar 

  • Fritz JB, Elhilali M, Shamma SA (2005) Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks. J Neurosci 25:7623–7635

    Article  CAS  PubMed  Google Scholar 

  • Fritz JB, Elhilali M, David SV, Shamma SA (2007) Auditory attention—focusing the searchlight on sound. Curr Opin Neurobiol 17:437–455

    Article  CAS  PubMed  Google Scholar 

  • Gregory RL (1980) Perception as hypotheses. Philos Trans R Soc Lond B 290:181–197

    Article  CAS  Google Scholar 

  • Hillyard SA, Hink RF, Schwent VL, Picton TW (1973) Electrical signs of selective attention in the human brain. Science 182:177–180

    Article  CAS  PubMed  Google Scholar 

  • Jääskeläinen IP, Ahveninen J, Belliveau JW, Raij T, Sams M (2007) Short-term plasticity in auditory cognition. Trends Neurosci 30:653–661

    Article  PubMed  Google Scholar 

  • Jäncke L, Specht K, Shah JN, Hugdahl K (2003) Focused attention in a simple dichotic listening task: an fMRI experiment. Brain Res Cogn Brain Res 16:257–266

    Article  PubMed  Google Scholar 

  • John MS, Dimitrijevic A, van Roon P, Picton TW (2001) Multiple auditory steady-state responses to AM and FM stimuli. Audiol Neurootol 6:12–27

    Article  CAS  PubMed  Google Scholar 

  • Lakatos P, Musacchia G, O’Connel MN, Falchier AY, Javitt DC, Schroeder CE (2013) The spectrotemporal filter mechanism of auditory selective attention. Neuron 77:750–761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McAdams S, Bertoncini J (1997) Organization and discrimination of repeating sound sequences by newborn infants. J Acoust Soc Am 102:2945–2953

    Article  CAS  PubMed  Google Scholar 

  • Moore BCJ (2008) An introduction to the psychology of hearing, 5th edn. Emerald Group Publishing, Bingley

    Google Scholar 

  • Näätänen R (1992) Attention and brain function. Lawrence Erlbaum, Hillsdale

    Google Scholar 

  • Näätänen R, Gaillard AWK, Mäntysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst) 42:313–329

    Article  Google Scholar 

  • Näätänen R, Näätänen R, Picton T (1987) The N1 wave of the human electric and Magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425

    Article  PubMed  Google Scholar 

  • Nelken I (2004) Processing of complex stimuli and natural scenes in the auditory cortex. Curr Opin Neurobiol 14:474–480

    Article  CAS  PubMed  Google Scholar 

  • Nelken I, Rotman Y, Bar-Yosef O (1999) Response of auditory-cortex neurons to structural features of natural sounds. Nature 397:154–157

    Article  CAS  PubMed  Google Scholar 

  • Nelken I, Fishbach A, Las L, Ulanovsky N, Farkas D (2003) Primary auditory cortex of cats: feature detection or something else? Biol Cybern 89:397–406

    Article  PubMed  Google Scholar 

  • Petkov CI, Kang X, Alho K, Bertrand O, Yund EW, Woods DL (2004) Attentional modulation of human auditory cortex. Nat Neurosci 7:658–663

    Article  CAS  PubMed  Google Scholar 

  • Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42

    Article  CAS  PubMed  Google Scholar 

  • Pressnitzer D, Sayles M, Micheyl C, Winter IM (2008) Perceptual organization of sound begins in the periphery. Curr Biol 18:1124–1128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Snyder JS, Alain C, Picton TW (2006) Effects of attention on neuroelectric correlates of auditory stream segregation. J Cogn Neurosci 18:1–13

    Article  PubMed  Google Scholar 

  • Sussman E (2005) Integration and segregation in auditory scene analysis. J Acoust Soc Am 117:1285–1298

    Article  PubMed  Google Scholar 

  • Sussman E (2007) A new view on the MMN and attention debate: Auditory context effects. J Psychophysiol 21(3–4):164–175

    Article  Google Scholar 

  • Sussman E, Steinschneider M (2006) Neurophysiological evidence for context-dependent encoding of sensory input in human auditory cortex. Brain Res 1075(1):165–174

  • Sussman E, Winkler I (2001) Dynamic sensory updating in the auditory system. Brain Res Cogn Brain Res 12:431–439

    Article  CAS  PubMed  Google Scholar 

  • Sussman E, Ritter W, Vaughan HG Jr (1998) Attention affects the organization of auditory input associated with the mismatch negativity system. Brain Res 789:130–138

    Article  CAS  PubMed  Google Scholar 

  • Sussman E, Ritter W, Vaughan HG Jr (1999) An investigation of the auditory streaming effect using event-related brain potentials. Psychophysiology 36:22–34

    Article  CAS  PubMed  Google Scholar 

  • Sussman E, Winkler I, Huotilainen M, Ritter W, Näätänen R (2002) Top-down effect on the initially stimulus-driven auditory organization. Brain Res Cogn Brain Res 13:393–405

    Article  PubMed  Google Scholar 

  • Sussman ES, Bregman AS, Wang WJ, Khan FJ (2005) Attentional modulation of electrophysiological activity in auditory cortex for unattended sounds within multistream auditory environments. Cogn Affect Behav Neurosci 5(1):93–110

    Article  CAS  PubMed  Google Scholar 

  • Sussman ES, Horvath J, Winkler I, Orr M (2007) The role of attention in the formation of auditory streams. Percept Psychophys 69(1):136–152

    Article  PubMed  Google Scholar 

  • Sussman E, Chen S, Sussman-Fort J, Dinces E (2013) The five myths of MMN: Redefining how to use MMN in basic and clinical research. Brain Topogr. 10.1007/s10548-013-0326-6

  • Winer JA, Miller LM, Lee CC, Schreiner CE (2005) Auditory thalamocortical transformation: structure and function. Trends Neurosci 28:255–263

    Article  CAS  PubMed  Google Scholar 

  • Winkler I, Sussman E, Tervaniemi M, Ritter W, Horvath J, Näätänen R (2003) Pre-attentive auditory context effect. Cogn Affect Behav Neurosci 3:57–77

    Article  PubMed  Google Scholar 

  • Winkler I, Takegata R, Sussman E (2005) Event-related brain potentials reveal multiple stages in the perceptual organization of sound. Brain Res Cogn Brain Res 25:291–299

    Article  PubMed  Google Scholar 

  • Winkler I, Denham SL, Nelken I (2009) Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends Cogn Sci 13(12):532–540

    Article  PubMed  Google Scholar 

  • Woldorff MG, Gallen CC, Hampson SA, Hillyard SA, Pantev C, Sobel D, Bloom FE (1993) Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proc Natl Acad Sci USA 90:8722–8726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yabe H, Winkler I, Czigler I, Koyama S, Kakigi R, Sutoh T, Hiruma T, Kaneko S (2001) Organizing sound sequences in the human brain: the interplay of auditory streaming and temporal integration. Brain Res 897:222–227

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Art & Neuroscience” fellowship from the Italian Academy for Advanced Studies in America (A.P.), by the “Columbia Science” fellowship from Columbia University (A.P.), by the National Institutes of Health Grant # R01 DC004263 (E.S.), and by the German Research Foundation Grant SFB/TRR 31 (C.S.H.). A.P. is currently supported by a Marie Curie Actions - BRIDGE Fellowship from the European Union Seventh Framework Programme, at the University of Geneva.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alessia Pannese or Elyse Sussman.

Additional information

This is one of several papers published together in Brain Topography on the ‘‘Special Issue: Auditory Cortex 2012”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10548_2014_368_MOESM1_ESM.jpg

Supplementary Figure. Event-related potentials and difference waveforms in the middle stream. Top: ERPs recorded from the central-frontal (Fz) electrode when subjects heard standard (blue lines) and deviant (red lines) tones within the middle frequency range in the 3-stream condition. Bottom: difference waveforms obtained by subtracting the ERP responses recorded when subjects heard standard tones from those recorded when subjects heard deviant tones. The deflection is not statistically significant (see Table 1) (JPEG 29 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pannese, A., Herrmann, C.S. & Sussman, E. Analyzing the Auditory Scene: Neurophysiologic Evidence of a Dissociation Between Detection of Regularity and Detection of Change. Brain Topogr 28, 411–422 (2015). https://doi.org/10.1007/s10548-014-0368-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-014-0368-4

Keywords

Navigation