Log in

Study of the Probability Density Functions From a Large-Eddy Simulation for a Stably Stratified Boundary Layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Turbulence in a non-strongly stably stratified large-eddy simulation (LES) case is studied through probability density functions (PDFs) to obtain additional information than that provided by classical LES averages. The PDFs are computed for one hour within the steady-state regime at three different levels: near the surface, in the middle and at the top of the boundary layer, for the wind components and the temperature. The physical significance of these PDFs from LES is discussed and they are compared to those obtained from observations. The analysis of the eddy structures within the stably stratified boundary layer is made through the combined study of the fields, the spectra and the statistical moments obtained from the PDFs and joint PDFs. The homogeneity of the fields is inspected through a comparison of the ensemble to the temporal and the spatial PDFs, showing that the ergodic theorem is not fulfilled. To this end, the sensitivity of the PDF moments to the LES resolution is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams N.A., and Stolz S., (2002), ‘A Subgrid-Scale Deconvolution Approach for Shock Capturing’. J. Comput. Phys. 178, 391–426

    Article  Google Scholar 

  • Beare R.J., MacVean M.K., Holtslag A.A.M., Cuxart J., Esau I., Golaz J.-C., Jiménez M.A., Khairoutdinov M., Kosovic B., Lewellen D., Lund T.S., Lundquist J.K., McCabe A., Moene A.F., Noh Y., Raasch S., and Sullivan P., (2006), ‘An Inter-Comparison of Large-eddy Simulations of the Stable Boundary Layer’. Boundary-Layer Meteorol. In press.

  • Chu C.R., Parlange M.B., Katul G.G., and Albertson J.D., (1996), ‘Probability Density Functions of Turbulent Velocity and Temperature in the Atmospheric Surface Layer’. Water Resources Res. 32, 1681–1688

    Article  Google Scholar 

  • Cuxart J., Bougeault P., and Redelsperger J.-L., (2000), ‘A Turbulence Scheme Allowing for Mesoscale and Large-eddy Simulations’. Quart. J. Roy. Meteorol. Soc. 126, 1–30

    Article  Google Scholar 

  • Cuxart J., Holtslag A.A.M., Beare R.J., Bazile E., Beljaars A., Conangla L., Ek M., Freedman F., Hamdi R., Kerstein A., Kitagawa A., Lenderink G., Lewellen D., Mailhot J., Mauritsen T., Perov V., Schayes G., Steeneveld G.-J., Svensson G., Taylor P., Weng W., Wunsch S., and Xu K.-M., (2006), ‘Single-column Model Inter-Comparison for a Stably Stratified Atmospheric Boundary Layer’. Boundary-Layer Meteorol. In press.

  • Deardorff J.W., Willis G.E., (1985), ‘Further Results from a Laboratory Model of the Convective Planetary Boundary Layer’. Boundary-Layer Meteorol. 32, 205–236

    Article  Google Scholar 

  • Jiménez M.A., and Cuxart J., (2005), ‘Large-eddy Simulations of the Stable Boundary Layer using the Standard Kolmogorov Theory: Range of Applicability’. Boundary-Layer Meteorol. 115, 241–261

    Article  Google Scholar 

  • Kampé de Fériet J., (1939), ‘Les Fonctions Aléatoires Stationnaires et la Théorie Statistique de la Turbulence Homogéne’. Ann. Soc. Sci. Bruxelles 59, 145–194

    Google Scholar 

  • Kosovic B., Curry J.A., (2000), ‘A Large Eddy Simulation Study of a Quasi-steady, Stably Stratified Atmospheric Boundary Layer’. J. Atmos. Sci. 57, 1052–1068

    Article  Google Scholar 

  • Lafore J.P., Stein J., Asencio N., Bougeault P., Ducrocq V., Duron J., Fisher C., Héreil P., Mascart P., Masson V., Pinty J.P., Redelsperger J.-L., Richard E., Vilá-Guerau de Arellano J., (1998), ‘The Meso-NH Atmospheric Simulation System. Part I: Adiabatic Formulation and Control Simulation’. Ann. Geophys. 16, 90–109

    Article  Google Scholar 

  • Larson V.E., Wood R., Field P.R., Golaz J.-C., Vonder, T. H and Cotton W.R., (2001), ‘Small-scale and Mesoscale Variability of Scalars in Cloudy Boundary Layers: One-dimensional Probability Density Functions’. J. Atmos. Sci. 58, 1978–1994

    Article  Google Scholar 

  • Mahrt L., Paumier J., (1984), ‘Heat Transport in the Atmospheric Boundary Layer’. J. Atmos. Sci. 41, 3061–3075

    Article  Google Scholar 

  • Millionshchikov M.D., (1939), ‘Decay of Homogeneous Isotropic Turbulence in Viscous Incompressible Fluids’. Doklady AN SSSR 22, 236–240

    Google Scholar 

  • Monin A.S., Yaglom A.M., (1971), ‘Statistical Fluid Mechanics. Vol. I’ The Massachusetts Institute of Technology, 769 pp.

  • Nieuwstadt F.T.M., Mason P.J., Moeng C.-H., Schumann U., (1993), ‘Large-eddy Simulation of the Convective Boundary Layer: A Comparison of Four Computer codes’. in Durst et al. (eds)., Turbulent shear flows 8 Springer-Verlag, 343–367.

  • Tennekes H., Lumley J.L., (1982), A First Course in Turbulence, The Massachusetts Institute of Technology, 300 pp.

  • Thoroddsen S.T., Van Atta C.W., (1992), ‘Exponential Tails and Skewness of Density-Gradient Probability Density Functions in Stably Stratified Turbulence’. J. Fluid Mech. 244, 547–566

    Article  Google Scholar 

  • Wang S., Stevens B., (2000), ‘Top-Hat Representation of Turbulence Statistics in Cloud-topped Boundary Layers: A Large Eddy Simulation Study’. J. Atmos. Sci. 57, 432–441

    MathSciNet  Google Scholar 

  • Wilks D.S., (1995), Statistical Methods in the Atmospheric Sciences. Academic Press, New York, pp. 467

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Jiménez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez, M.A., CUXART, J. Study of the Probability Density Functions From a Large-Eddy Simulation for a Stably Stratified Boundary Layer. Boundary-Layer Meteorol 118, 401–420 (2006). https://doi.org/10.1007/s10546-005-9009-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-9009-5

Keywords

Navigation