Log in

Ultraminiature encapsulated accelerometers as a fully implantable sensor for implantable hearing aids

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Experiments were conducted to evaluate a silicon accelerometer as an implantable sound sensor for implantable hearing aids. The main motivation of this study is to find an alternative sound sensor that is implantable inside the body, yet does not suffer from the signal attenuation from the body. The merit of the accelerometer sensor as a sound sensor will be that it will utilize the natural mechanical conduction in the middle ear as a source of the vibration. With this kind of implantable sound sensor, a totally implantable hearing aid is feasible. A piezoresistive silicon accelerometer that is completely encapsulated with a thin silicon film and long flexible flex-circuit electrical cables were used for this study. The sensor is attached on the middle ear ossicles and measures the vibration transmitted from the tympanic membrane due to the sound in the ear canal. In this study, the sensor is fully characterized on a human cadaveric temporal bone preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • R.M. Abrams, A.J.M. Peters, K.J. Gerhardt, Obstet. Gynecol. 90, 216 (1997)

    Article  Google Scholar 

  • R.M. Abrams, A.J.M. Peters, X. Huang, D.E. Wasserman, K.J. Gerhardt, J. Sound Vib. 230, 725 (2000)

    Article  Google Scholar 

  • R. Aibara, J.T. Welsh, S. Puria, R.L. Goode, Hear. Res. 152, 100 (2001)

    Article  Google Scholar 

  • R.N. Candler, W.-T. Park, M.A. Hopcroft, B. Kim, T.W. Kenny, in Proceedings of The 13th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers ’05), vol. 2, Seoul, Korea, 2005, p. 920

  • D.A. Chen, D.D. Backous, M.A. Arriaga, R. Garvin, D. Kobylek, T. Littman, S. Walgren, D. Lura, Otolaryngol. Head Neck. Surg. 131, 904 (2004)

    Article  Google Scholar 

  • S.L. Cheng, J. Timonen, H. Suominen, J. Biomech. 28, 471 (1995)

    Article  Google Scholar 

  • C.J. Colloca, T.S. Keller, R. Gunzburg, J. Manip. Physiol. Ther. 26, 579 (2003)

    Article  Google Scholar 

  • A.L. Evans, G. Duncan, W. Gilchrist, Med. Biol. Eng. Comput. 29, 102 (1991)

    Article  Google Scholar 

  • J. Fahrenberg, F. Foerster, M. Smeja, W. Muller, Psychophysiology 34, 607 (1997)

    Article  Google Scholar 

  • D.N. Helman, A.F. Choudhri, D.L.S. Morales, M.R. Williams, M.C. Oz, ASAIO J. 46, 156 (2000)

    Article  Google Scholar 

  • M.S. Holi, S. Radhakrishnan, in IEEE Region 10 Annual International Conference, Proceedings/TENCON, vol. 4, Bangalore, India, 2003, p. 1395

  • P. Johansen, C. Riis, J.M. Hasenkam, P.K. Paulsen, H. Nygaard, Proc. Inst. Mech. Eng., H J. Eng. Med. 214, 121 (2000)

    Google Scholar 

  • T.S. Keller, C.J. Colloca, R. Gunzburg, J. Manip. Physiol. Ther. 26, 567 (2003)

    Article  Google Scholar 

  • S.G. Lesinski, T. Henderson, US Patent 5531787 (1996)

  • C. Li, F.E. Sauser, R. Azizkhan, C.H. Ahn, I. Papautsky, Tech. Digest, IEEE MEMS, 749 (2004)

  • G. Lowet, G. Van der Perre, Proc. SPIE Int. Soc. Opt. Eng. 2361, 305 (1994)

    Google Scholar 

  • NIDCD, Statistics about Hearing Disorders, Ear Infections, and Deafness (National Institutes of Health, Bethesda, MD, 2005)

    Google Scholar 

  • W.-T. Park, A. Partridge, R.N. Candler, V. Ayanoor-Vitikkate, G. Yama, M. Lutz, T.W. Kenny, Microelectromechanical Syst. 15, 507 (2006)

    Article  Google Scholar 

  • A.C. Pinchak, R.S. Wiley, C. Kovijanic, J. Biomech. Eng. 103, 160 (1981)

    Article  Google Scholar 

  • S. Puria, R.C. Perkins, US Patent 6554761 (2003)

  • M. Rostedt, L. Ekstrom, H. Broman, T. Hansson, J. Biomech. 31, 503 (1998)

    Article  Google Scholar 

  • H.P. Zenner, M.M. Maassen, P.K. Plinkert, R. Zimmermann, J.W. Baumann, G. Reischl, H. Leysieffer, HNO 46, 844 (1998)

    Article  Google Scholar 

  • Q. Zou, W. Tan, E.S. Kim, J. Singh, G.E. Loeb, in Annual International Conference of the IEEE Engineering in Medicine and Biology—Proceedings, vol. 26, San Francisco, 2004, p. 4279

Download references

Acknowledgements

This work was supported by DARPA HERMIT (ONR N66001-03-1-8942), Bosch Palo Alto Research and Technology Center, a CIS Seed Grant, The National Nanofabrication Users Network facilities funded by the National Science Foundation under award ECS-9731294, and The National Science Foundation Instrumentation for Materials Research Program (DMR 9504099). The authors would especially like to thank Gary Yama1, Markus Lutz2, and Aaron Partridge2 for their guidance and assistance in the device design and fabrication (1Robert Bosch Corporation, 2Robert Bosch Corporation, currently at SiTime).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo-Tae Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, WT., O’Connor, K.N., Chen, KL. et al. Ultraminiature encapsulated accelerometers as a fully implantable sensor for implantable hearing aids. Biomed Microdevices 9, 939–949 (2007). https://doi.org/10.1007/s10544-007-9072-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9072-4

Keywords

Navigation