Log in

Influence of changes in local environmental variables on the distribution and abundance dynamics of wintering Teal Anas crecca

  • Original Research
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Explaining changes in waterfowl distribution and abundance is requested by wetland managers for a better understanding of their population dynamics and habitat use. The objective of this study was to assess the influence of interannual changes in wetland management, both through direct data and proxies, on the distribution dynamics of Teal day-roosts in the Camargue, a large wetland complex in southern France. We constructed a state-space model accounting for a conditional detection probability by aerial observers during duck counts, since changes in observers have a strong influence on variations in detection probability. First, we showed that the distribution of Teal day-roosts within the Camargue delta has changed over the last 35 years. Second, on a sub-sample of 18 years, we showed that annual changes in Teal abundance depended on salinity and open water area at the day-roost, and on the availability of potential feeding grounds surrounding the day-roost (available wetland area within 5 km). No association was detected between changes in Teal abundance and changes in the typology of wetland hydrology, or with changes in site protection status (i.e. hunted to protected). Our results reinforce the importance of considering management at the scale of functional units, by considering the complementarity of nocturnal feeding areas (mainly hunted areas) specifically managed for waterfowl, and diurnal roosts (mainly nature reserves, which have high conservation value for other animal and plant species). A good understanding of the factors affecting the localisation of waterfowl day-roosts is becoming more important in the context of climate change, which is likely to redistribute local birds with rising sea levels and increasing salinity in wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Adams JB, Bate GC, O’callaghan M (1999) Primary producers. Estuaries of South Africa. Cambridge University Press, Cambridge, pp 91–117

    Chapter  Google Scholar 

  • Allouche L, Dervieux A, LESPINASSE P, Tamisier A (1989) Sélection de l’habitat diurne par trois espèces d’oiseaux d’eau herbivores hivernant en Camargue (France). Acta Oecol Oecologia Appl 10:197–212

    Google Scholar 

  • Anderson DR, Burnham KP (1976) Population ecology of the mallard: VI. The effect of exploitation on survival. US Fish and Wildlife Service, Washington

    Google Scholar 

  • Arzel C, Elmberg J, Guillemain M (2007) A flyway perspective of foraging activity in eurasian green-winged Teal, Anas crecca crecca. Can J Zool 85:81–91

    Article  Google Scholar 

  • Arzel C, Elmberg J, Guillemain M et al (2009) A flyway perspective on food resource abundance in a long-distance migrant, the Eurasian Teal (Anas crecca). J Ornithol 150:61–73

    Article  Google Scholar 

  • Aznar J-C, Dervieux A, Grillas P (2003) Association between aquatic vegetation and landscape indicators of human pressure. Wetlands 23:149–160

    Article  Google Scholar 

  • Banks RC, Springer PF (1994) A century of population trends of waterfowl in western North America. Stud Avian Biol 15:134–146

    Google Scholar 

  • Barnes GG, Nudds TD (1991) Salt tolerance in American black ducks, mallards, and their F1-hybrids. Auk 108:89–98

    Google Scholar 

  • Beauchamp G (2003) Group-size effects on vigilance: a search for mechanisms. Behav Process 63:111–121

    Article  Google Scholar 

  • Béchet A, Giroux J-F, Gauthier G (2004) The effects of disturbance on behaviour, habitat use and energy of spring staging snow geese. J Appl Ecol 41:689–700. https://doi.org/10.1111/j.0021-8901.2004.00928.x

    Article  Google Scholar 

  • Bonis A, Lepart J, Grillas P (1995) Seed bank dynamics and coexistence of annual macrophytes in a temporary and variable habitat. Oikos 74:81–92. https://doi.org/10.2307/3545677

    Article  Google Scholar 

  • Bregnballe T, Madsen J, Rasmussen PA (2004) Effects of temporal and spatial hunting control in waterbird reserves. Biol Conserv 119:93–104

    Article  Google Scholar 

  • Brochet A-L, Gauthier-Clerc M, Mathevet R et al (2009) Marsh management, reserve creation, hunting periods and carrying capacity for wintering ducks and coots. Biodivers Conserv 18:1879–1894. https://doi.org/10.1007/s10531-008-9562-6

    Article  Google Scholar 

  • Brochet A-L, Mouronval J-B, Aubry P et al (2012) Diet and feeding habitats of Camargue dabbling ducks: what has changed since the 1960s? Waterbirds 35:555–576

    Article  Google Scholar 

  • Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7:434–455. https://doi.org/10.1080/10618600.1998.10474787

    Article  Google Scholar 

  • Broughton JM, Mullins D, Ekker T (2007) Avian resource depression or intertaxonomic variation in bone density? A test with San Francisco Bay avifaunas. J Archaeol Sci 34:374–391. https://doi.org/10.1016/j.jas.2006.05.013

    Article  Google Scholar 

  • Burton NH (2007) Landscape approaches to studying the effects of disturbance on waterbirds. Ibis 149:95–101

    Article  Google Scholar 

  • Champagnon J, Elmberg J, Guillemain M et al (2012) Conspecifics can be aliens too: a review of effects of restocking practices in vertebrates. J Nat Conserv 20:231–241. https://doi.org/10.1016/j.jnc.2012.02.002

    Article  Google Scholar 

  • Core Team R (2017) R: a language and environment for statistical computing. R Found

  • Cox RR, Afton AD (1997) Use of Habitats by Female Northern Pintails Wintering in Southwestern Louisiana. J Wildl Manag 61:435–443. https://doi.org/10.2307/3802601

    Article  Google Scholar 

  • Cross DH (1988) Waterfowl management handbook. US Department of the Interior, Fish and Wildlife Service, Washington

    Google Scholar 

  • Davis JB, Guillemain M, Kaminski RM et al (2014) Habitat and resource use by waterfowl in the northern hemisphere in autumn and winter. Wildfowl 17–69

  • de Valpine P, Hastings A (2002) Fitting population models incorporating process noise and observation error. Ecol Monogr 72:57–76. https://doi.org/10.1890/0012-9615(2002)072[0057:FPMIPN]2.0.CO;2

    Article  Google Scholar 

  • Dehorter O, Tamisier A (1996) Wetland habitat characteristics for waterfowl wintering in Camargue, Southern France: implications for conservation. Rev Décologie 51:161

    Google Scholar 

  • Dennis B, Ponciano JM, Lele SR et al (2006) Estimating density dependence, process noise, and observation error. Ecol Monogr 76:323–341. https://doi.org/10.1890/0012-9615(2006)76[323:EDDPNA]2.0.CO;2

    Article  Google Scholar 

  • Dessborn L, Brochet AL, Elmberg J et al (2011) Geographical and temporal patterns in the diet of pintail Anas acuta, wigeon Anas penelope, mallard Anas platyrhynchos and Teal Anas crecca in the western Palearctic. Eur J Wildl Res 57:1119–1129

    Article  Google Scholar 

  • Díaz S, Settele J, Brondízio ES et al (2019) Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Intergov Sci-Policy Platf Biodivers Ecosyst Serv, Bonn

    Google Scholar 

  • Diefenbach DR, Brauning DW, Mattice JA (2003) Variability in grassland bird counts related to observer differences and species detection rates. Auk 120:1168–1179. https://doi.org/10.1093/auk/120.4.1168

    Article  Google Scholar 

  • Evans DM, Day KR (2001) Does shooting disturbance affect diving ducks wintering on large shallow lakes? A case study on Lough Neagh, Northern Ireland. Biol Conserv 98:315–323. https://doi.org/10.1016/S0006-3207(00)00170-1

    Article  Google Scholar 

  • Fox AD, Madsen J (1997) Behavioural and distributional effects of hunting disturbance on waterbirds in Europe: implications for refuge design. J Appl Ecol 34:1–13

    Article  Google Scholar 

  • Fox AD, Madsen J (2017) Threatened species to super-abundance: the unexpected international implications of successful goose conservation. Ambio 46:179–187

    Article  PubMed  PubMed Central  Google Scholar 

  • Frank SC, Ordiz A, Gosselin J et al (2017) Indirect effects of bear hunting: a review from Scandinavia. Ursus 28:150–164

    Article  Google Scholar 

  • Gabry J, Simpson D, Vehtari A et al (2019) Visualization in Bayesian workflow. J R Stat Soc Ser a Stat Soc 182:389–402. https://doi.org/10.1111/rssa.12378

    Article  Google Scholar 

  • Gaget E, Pavón-Jordán D, Johnston A et al (2021) Non-breeding waterbirds benefit from protected areas when adjusting their distribution to climate warming. bioRxiv. https://doi.org/10.1101/2021.04.26.441480

    Article  Google Scholar 

  • Gill JA, Norris K, Sutherland WJ (2001a) The effects of disturbance on habitat use by black-tailed godwits Limosa limosa. J Appl Ecol 38:846–856. https://doi.org/10.1046/j.1365-2664.2001.00643.x

    Article  Google Scholar 

  • Gill JA, Norris K, Sutherland WJ (2001b) Why behavioural responses may not reflect the population consequences of human disturbance. Biol Conserv 97:265–268

    Article  Google Scholar 

  • Gourlay-Larour M-L, Pradel R, Guillemain M et al (2013) Individual turnover in common pochards wintering in western France. J Wildl Manag 77:477–485

    Article  Google Scholar 

  • Grillas P (1990) Distribution of submerged macrophytes in the Camargue in relation to environmental factors. J Veg Sci 1:393–402. https://doi.org/10.2307/3235716

    Article  Google Scholar 

  • Grillas P (1992) Les communautés de macrophytes submergées des marais temporaires oligo-halins de Camargue. Etude expérimentale des causes de la distribution des espèces. Rennes 1

  • Grillas P, Battedou G (1998) Effects of flooding date on the biomass, species composition and seed production in submerged macrophyte beds in temporary marshes in the Camargue (S. France). Wetlands for the Future. Gleneagles Publishing, Adelaide, pp 207–218

    Google Scholar 

  • Grillas P, Garcia-Murillo P, Geertz-Hansen O et al (1993) Submerged macrophyte seed bank in a Mediterranean temporary marsh: abundance and relationship with established vegetation. Oecologia 94:1–6

    Article  CAS  PubMed  Google Scholar 

  • Guillemain M, Elmberg J (2014) The Teal. Bloomsbury Publishing, London

    Google Scholar 

  • Guillemain M, Fritz H, Guillon N (2000) The use of an artificial wetland by Shoveler Anas clypeata in western France: the role of food resources. Rev Décologie 55:263

    Google Scholar 

  • Guillemain M, Fritz H, Duncan P (2002a) The importance of protected areas as nocturnal feeding grounds for dabbling ducks wintering in western France. Biol Conserv 103:183–198

    Article  Google Scholar 

  • Guillemain M, Fritz H, Duncan P (2002b) Foraging strategies of granivorous dabbling ducks wintering in protected areas of the French Atlantic coast. Biodivers Conserv 11:1721–1732. https://doi.org/10.1023/A:1020322032114

    Article  Google Scholar 

  • Guillemain M, Fritz H, Guillon N, Simon G (2002c) Ecomorphology and Coexistence in dabbling ducks: the role of Lamellar density and body length in Winter. Oikos 98:547–551

    Article  Google Scholar 

  • Guillemain M, Mondain-Monval J-Y, Weissenbacher E et al (2008) Hunting bag and distance from nearest day-roost in Camargue ducks. Wildl Biol 14:379–385

    Article  Google Scholar 

  • Guillemain M, Fuster J, Lepley M et al (2009) Winter site fidelity is higher than expected for eurasian Teal Anas crecca in the Camargue, France. Bird Study 56:272–275. https://doi.org/10.1080/00063650902792122

    Article  Google Scholar 

  • Guillemain M, Devineau O, Brochet A-L et al (2010) What is the spatial unit for a wintering Teal Anas crecca? Weekly day roost fidelity inferred from nasal saddles in the Camargue, southern France. Wildl Biol 16:215–220

    Article  Google Scholar 

  • Guillemain M, Calenge C, Champagnon J, Hearn R (2017) Determining the boundaries of migratory bird flyways: a Bayesian model for eurasian Teal Anas crecca in western Europe. J Avian Biol 48:1331–1341

    Article  Google Scholar 

  • Guillemain M, Vallecillo D, Grzegorczyk E et al (2021) Consequences of shortened hunting seasons by the birds directive on late winter Teal Anas crecca abundance in France. Wildl Biol 2021:wlb00845

    Article  Google Scholar 

  • Hair J (2009) Multivariate Data Analysis. Fac Publ

  • Henny CJ (1967) Estimating band-reporting rates from banding and crippling loss data. J Wildl Manag 31:533–538

    Article  Google Scholar 

  • IUCN (1994) Guidelines for protected area management categories. CNPPA with the assistance of WCMC, Cambridge, UK

    Google Scholar 

  • Johnson W, Schmidt P, Taylor D (2014) Foraging flight distances of wintering ducks and geese: a review. Avian Conserv Ecol 9:2

    Article  Google Scholar 

  • Kear J (2010) Man and wildfowl. A&C Black, London

    Google Scholar 

  • Kery M, Schaub M (2012) Bayesian Population Analysis using WinBUGS: A Hierarchical Perspective. Academic Press, Cambridge

    Google Scholar 

  • Kéry M, Schaub M (2011) Bayesian Population Analysis using WinBUGS: A Hierarchical Perspective. Academic Press, Cambridge

    Google Scholar 

  • Lange KL, Little RJA, Taylor JMG (1989) Robust statistical modeling using the t distribution. J Am Stat Assoc 84:881–896. https://doi.org/10.1080/01621459.1989.10478852

    Article  Google Scholar 

  • Lefebvre G, Davranche A, Willm L et al (2019) Introducing WIW for detecting the presence of water in wetlands with landsat and sentinel satellites. Remote Sens 11:2210

    Article  Google Scholar 

  • Leschisin DA, Williams GL, Weller MW (1992) Factors affecting waterfowl use of constructed wetlands in northwestern Minnesota. Wetlands 12:178–183

    Article  Google Scholar 

  • Livezey KB, Fernandez-Juricic E, Blumstein DT (2016) Database of bird flight initiation distances to assist in estimating effects from human disturbance and delineating buffer areas. J Fish Wildl Manag 7:181–191

    Article  Google Scholar 

  • Madsen J (1998) Experimental refuges for migratory waterfowl in danish wetlands. II. Tests of hunting disturbance effects. J Appl Ecol 35:398–417

    Article  Google Scholar 

  • Madsen J, Fox AD (1995) Impacts of hunting disturbance on waterbirds—a review. Wildl Biol 1:193–207. https://doi.org/10.2981/wlb.1995.0025

    Article  Google Scholar 

  • Makowski D, Ben-Shachar MS, Chen SH, Lüdecke D (2019) Indices of effect existence and significance in the Bayesian framework. Front Psychol 10:2767

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathevet R (2004) Camargue incertaine: sciences, usages et natures. Buchet-Chastel, Paris

    Google Scholar 

  • Mathevet R, Tamisier A (2002) Creation of a nature reserve, its effects on hunting management and waterfowl distribution in the Camargue (southern France). Biodivers Conserv 11:509–519

    Article  Google Scholar 

  • McDuie F, Lorenz AA, Klinger RC et al (2021) Informing wetland management with waterfowl movement and sanctuary use responses to human-induced disturbance. J Environ Manage 297:113170

    Article  PubMed  Google Scholar 

  • McKinstry MC, Anderson SH (2002) Creating wetlands for waterfowl in Wyoming. Ecol Eng 18:293–304

    Article  Google Scholar 

  • Meltofte H (1996) A new danish hunting and wildlife management act: the result of mutual understanding and compromise between hunters and non-hunters. Gibier Faune Sauvage 13:1009–1021

    Google Scholar 

  • Mondain-Monval J-Y, Olivier A, Bihan AL (2013) Recent trends in the number of hunters and the harvest of wildfowl in the Camargue, France: preliminary results. Wildfowl 192–201

  • Moorman AM, Moorman TE, Baldassarre GA, Richard DM (1991) Effects of saline water on growth and survival of mottled duck ducklings in Louisiana. J Wildl Manag 55:471–476

    Article  Google Scholar 

  • Mouronval JB, Brochet AL, Aubry P, Guillemain M (2014) Les anatidés hivernant en camargue se nourrissent-ils dans les marais aménagés pour la chasse. Faune Sauvage 303:14–21

    Google Scholar 

  • Nichols JD, Hines JE, Sauer JR et al (2000) A double-observer approach for estimating detection probability and abundance from point counts. Auk 117:393–408. https://doi.org/10.1093/auk/117.2.393

    Article  Google Scholar 

  • Nye ER, Dickman CR, Kingsford RT (2007) A wild goose chase—temporal and spatial variation in the distribution of the Magpie Goose (Anseranas semipalmata) in Australia. Emu-Austral Ornithol 107:28–37

    Article  Google Scholar 

  • Pachauri RK, Allen MR, Allen VR et al (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Ipcc, Geneva

    Google Scholar 

  • Paillisson J-M, Reeber S, Marion L (2002) Bird assemblages as bio-indicators of water regime management and hunting disturbance in natural wet grasslands. Biol Conserv 106:115–127

    Article  Google Scholar 

  • Pernollet CA, Guelmami A, Green AJ et al (2015) A comparison of wintering duck numbers among european rice production areas with contrasting flooding regimes. Biol Conserv 186:214–224

    Article  Google Scholar 

  • Pernollet CA, Cavallo F, Simpson D et al (2017) Seed density and waterfowl use of rice fields in Camargue, France. J Wildl Manag 81:96–111

    Article  Google Scholar 

  • Perry MC, Deller AS (1996) Review of factors affecting the distribution and abundance of waterfowl in shallow-water habitats of Chesapeake Bay. Estuaries 19:272–278

    Article  Google Scholar 

  • Pirot JY, Chessel D, Tamisier A (1984) Exploitation alimentaire des zones humides de Camargue par cinq espèces de canards de surface en hivernage et en transit: modélisation spatio-temporelle. Rev Décologie 39–2:167

    Google Scholar 

  • Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. Work Pap 8

  • Pöysä H (1987) Feeding-vigilance trade-off in the Teal (Anas crecca): effects of feeding method and predation risk. Behaviour 103:108–122

    Article  Google Scholar 

  • Sanz-Pérez A, Sollmann R, Sardà-Palomera F et al (2020) The role of detectability on bird population trend estimates in an open farmland landscape. Biodivers Conserv 29:1747–1765. https://doi.org/10.1007/s10531-020-01948-0

    Article  Google Scholar 

  • Schmaltz L, Quaintenne G, Couzi L (2020) Comptage des oiseaux d’eau à la mi-janvier en france résultats 2020 du comptage. Wetlands International, Wageningen

    Google Scholar 

  • Scott DA, Rose PM (1996) Atlas of Anatidae populations in Africa and western Eurasia. Wetlands International Publication, Wageningen

    Google Scholar 

  • Smith LM, Pederson RL, Kaminski RM (1989) Habitat management for migrating and wintering waterfowl in North America. Texas Tech University Press, Lubbock

    Google Scholar 

  • Su Y-S, Yajima M (2015) R2jags: Using R to Run “JAGS”

  • Sutherland WJ, Crockford NJ (1993) Factors affecting the feeding distribution of red-breasted geese Branta ruficollis wintering in Romania. Biol Conserv 63:61–65

    Article  Google Scholar 

  • Tamisier A (1978) The functional units of w intering ducks: a spatial integration of their com fort and feeding requirem ents. Verh Orn Ges Bayern 23:229–238

    Google Scholar 

  • Tamisier A, Dehorter O (1999) Camargue, canards et foulques: fonctionnement et devenir d’un prestigieux quartier d’hiver. Centre ornithologique du Gard, Nîmes

    Google Scholar 

  • Tamisier A, Grillas P (1994) A review of habitat changes in the Camargue: an assessment of the effects of the loss of biological diversity on the wintering waterfowl community. Biol Conserv 70:39–47

    Article  Google Scholar 

  • Tamisier A, Pradel R (1992) Analyse statistique de l’habitat hivernal diurne du canard siffleur Anas penelope L. en Camargue. Perspectives de gestion. Rev Décologie 47:135–150

    Google Scholar 

  • Tamisier A, Tamisier M-C (1981) L’existence d’unités fonctionnelles démontrée chez les sarcelles d’hiver en camargue par la biotélémétrie. Rev Décologie 35:563–579

    Google Scholar 

  • Tamisier A, Allouche L, Aubry F, Dehorter O (1995) Wintering strategies and breeding success: hypothesis for a trade-off in some waterfowl species. Wildfowl 46:76–88

    Google Scholar 

  • Tamisier A, Béchet A, Jarry G et al (2003) Effets du dérangement par la chasse sur les oiseaux d’eau: revue de littérature. Rev Décologie 58:435–449

    Google Scholar 

  • Thomas GJ (1982) Autumn and winter feeding ecology of waterfowl at the ouse washes, England. J Zool 197:131–172

    Article  Google Scholar 

  • Tuite CH, Hanson PR, Owen M (1984) Some ecological factors affecting winter wildfowl distribution on inland waters in England and Wales, and the influence of water-based recreation. J Appl Ecol 21:41–61

    Article  Google Scholar 

  • Vallecillo D, Gauthier-Clerc M, Guillemain M et al (2021) Reliability of animal counts and implications for the interpretation of trends. Ecol Evol 11:2249–2260

    Article  PubMed  PubMed Central  Google Scholar 

  • Vallecillo D, Guillemain M, Authier M et al (2022) Accounting for detection probability with overestimation by integrating double monitoring programs over 40 years. PLoS ONE 17:e0265730. https://doi.org/10.1371/journal.pone.0265730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vercauteren KC, Hygnstrom SE (1998) Effects of agricultural activities and hunting on home ranges of female white-tailed deer. J Wildl Manag 62:280–285

    Article  Google Scholar 

  • Wetlands International (2021) Waterbird population estimates. Retrieved Wpewetlandsorg Thurs 11 Nov 2021

  • Williams BK (1997) Approaches to the management of waterfowl under uncertainty. Wildl Soc Bull 25:714–720

    Google Scholar 

  • Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

We thank the Tour du Valat, the Amis des Marais du Vigueirat, the Office français de la biodiversité, the Parc naturel régional de Camargue, the Syndicat Mixte de la Camargue gardoise and the Société nationale de protection de la nature who provided the salinity data and the associated staff that collected the data. We also thank Nicolas Malèvre and Anis Guelmami for their help in collecting and formatting the data extracted from remote sensing. Data collection was possible thanks to the ground observers and the three aerial observers: Alain Tamisier, Michel Gauthier-Clerc and Jean-Baptiste Mouronval. This work was supported by funding from the Foundation François Sommer.

Funding

This work was supported by funding from the Foundation François Sommer (https://fondationfrancoissommer.org/).

Author information

Authors and Affiliations

Authors

Contributions

DV contributed to the study conception, design, data analysis, result interpretation and in the writing of the manuscript. MG contributed to the study conception, design, result interpretation and in the writing of the manuscript. CB contributed in data analysis and result interpretation. SR contributed in data analysis and result interpretation. JC contributed to the study conception, design, result interpretation and in the writing of the manuscript. The first draft of the manuscript was written by DV and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to David Vallecillo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Louise Ashton.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallecillo, D., Guillemain, M., Bouchard, C. et al. Influence of changes in local environmental variables on the distribution and abundance dynamics of wintering Teal Anas crecca. Biodivers Conserv 32, 4627–4649 (2023). https://doi.org/10.1007/s10531-023-02713-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-023-02713-9

Keywords

Navigation