Log in

Does neighbourhood tree diversity affect the crown arthropod community in saplings?

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Mixed forest with multiple tree species is expected to create heterogeneous habitat and diverse niches for the canopy arthropod community. We assessed arthropod abundance, order richness, and community composition in the crowns of saplings of nine temperate tree species in two plantations of a recently established tree diversity experiment in Belgium, and looked for relationships with the diversity and structure of the sapling’s local neighbourhood. The crown arthropod community differed between the two study sites, both in terms of abundances and composition. More arthropods were found in the post-agricultural site; the arthropod community was more complex in the formerly forested site. The tree species identity of a sapling, its apparency, and the phylogenetic diversity of its local neighbourhood all affected the crown arthropod community. Our study suggests that mixing phylogenetically distant tree species creates niches for a complex crown arthropod community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal AA, Lau JA, Hambäck PA (2006) Community heterogeneity and the evolution of interactions between plants and insect herbivores. Q Rev Biol 81:349–376. doi:10.1086/511529

    Article  PubMed  Google Scholar 

  • Ampoorter E, Baeten L, Vanhellemont M et al (2015) Disentangling tree species identity and richness effects on the herb layer: first results from a German tree diversity experiment. J Veg Sci 26:742–755. doi:10.1111/jvs.12281

    Article  Google Scholar 

  • Andow D (1991) Vegetational diversity and arthropod population response. Annu Rev Entomol 36:561–586. doi:10.1146/annurev.ento.36.1.561

    Article  Google Scholar 

  • Barbosa P, Hines J, Kaplan I et al (2009) Associational resistance and associational susceptibility: having right or wrong neighbors. Annu Rev Ecol Evol Syst 40:1–20. doi:10.1146/annurev.ecolsys.110308.120242

    Article  Google Scholar 

  • Basset Y, Novotny V, Miller SE, Kitching RL (2008) Canopy entomology, an expanding field of natural science. In: Basset Y, Novotny V, Miller SE, Kitching RL (eds) Arthropods tropical forest spatial dynamics resources use canopy. Cambridge University Press, Cambridge, pp 4–6

    Google Scholar 

  • Berry ME, Bock CE (1998) Effects of habitat and landscape characteristics on avian breeding distributions in Colorado foothills shrub. Southwest Nat 43:453–461

    Google Scholar 

  • Bird S, Coulson RN, Crossley DA (2000) Impacts of silvicultural practices on soil and litter arthropod diversity in a Texas pine plantation. For Ecol Manage 131:65–80. doi:10.1016/S0378-1127(99)00201-7

    Article  Google Scholar 

  • Brown VK, Southwood TRE (1983) Trophic diversity, niche breadth and generation times of exopterygote insects in a secondary succession. Oecologia 56:220–225. doi:10.1007/BF00379693

    Article  Google Scholar 

  • Cadotte MW, Dinnage R, Tilman D (2012) Phylogenetic diversity promotes ecosystem stability. Ecology 93:223–233. doi:10.1890/11-0426.1

    Article  Google Scholar 

  • Capinera JL (2008) Encyclopedia of entomology. Springer Science, Heidelberg

    Book  Google Scholar 

  • Castagneyrol B, Giffard B, Péré C, Jactel H (2013) Plant apparency, an overlooked driver of associational resistance to insect herbivory. J Ecol 101:418–429. doi:10.1111/1365-2745.12055

    Article  Google Scholar 

  • Castagneyrol B, Jactel H, Vacher C et al (2014) Effects of plant phylogenetic diversity on herbivory depend on herbivore specialization. J Appl Ecol 51:134–141. doi:10.1111/1365-2664.12175

    Article  Google Scholar 

  • Cesarz S, Fahrenholz N, Migge-Kleian S et al (2007) Earthworm communities in relation to tree diversity in a deciduous forest. Eur J Soil Biol 43:S61–S67. doi:10.1016/j.ejsobi.2007.08.003

    Article  Google Scholar 

  • Chen B, Wise DH (1999) Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web. Ecology 80:761–772. doi:10.1890/0012-9658(1999)080[0761:BULOPA]2.0.CO;2

    Article  Google Scholar 

  • Chinery M (2012) Nieuwe insectengids. Tirion Uitgevers, Utrecht

    Google Scholar 

  • Dobson AJ (2002) An introduction to generalized linear models

  • Durka W, Michalski SG (2012) Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses. Ecology 93:2297–2297. doi:10.1890/12-0743.1

    Article  Google Scholar 

  • Ecke F, Löfgren O, Sörlin D (2002) Population dynamics of small mammals in relation to forest age and structural habitat factors in northern Sweden. J Appl Ecol 39:781–792. doi:10.1046/j.1365-2664.2002.00759.x

    Article  Google Scholar 

  • Ernest KA (1989) Insect herbivory on a tropical understory tree: effects of leaf age and habitat. Biotropica 21:194. doi:10.2307/2388642

    Article  Google Scholar 

  • Estades CF (1997) Bird-habitat relationships in a vegetational gradient in the Andes of central Chile. Condor 99:719–727

    Article  Google Scholar 

  • Estrada A, Coates-Estrada R, Meritt DA (1994) Non flying mammals and landscape changes in the tropical rain forest region of Los Tuxtlas, Mexico. Ecography (Cop) 17:229–241

    Article  Google Scholar 

  • Goßner M, Ammer U (2006) The effects of Douglas-fir on tree-specific arthropod communities in mixed species stands with European beech and Norway spruce. Eur J For Res 125:221–235. doi:10.1007/s10342-006-0113-y

    Article  Google Scholar 

  • Goßner M, Engel K, Jessel B (2008) Plant and arthropod communities in young oak stands: are they determined by site history. Biodivers Conserv 17:3165–3180. doi:10.1007/s10531-008-9418-0

    Article  Google Scholar 

  • Haase J, Castagneyrol B, Cornelissen JHC et al (2015) Contrasting effects of tree diversity on young tree growth and resistance to insect herbivores across tree biodiversity experiments. Oikos n/a–n/a. doi:10.1111/oik.02090

    Google Scholar 

  • Haddad NM, Tilman D, Haarstad J et al (2001) Contrasting effects of plant richness and composition on insect communities: a field experiment. Am Nat 158:17–35. doi:10.1086/320866

    Article  PubMed  CAS  Google Scholar 

  • Haddad NM, Crutsinger GM, Gross K et al (2009) Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol Lett 12:1029–1039. doi:10.1111/j.1461-0248.2009.01356.x

    Article  PubMed  Google Scholar 

  • Hajek AE, Dahlsten DL (1986) Coexistence of three species of leaf-feeding aphids (Homoptera) on Betula pendula. Oecologia 68:380–386. doi:10.1007/bf01036743

    Article  Google Scholar 

  • Hambäck P, Beckerman A (2003) Herbivory and plant resource competition: a review of two interacting interactions. Oikos 1:26–37. doi:10.1034/j.1600-0706.2003.12568.x

    Article  Google Scholar 

  • Harmon-Threatt AN, Ackerly DD (2013) Filtering across spatial scales: phylogeny, biogeography and community structure in Bumble Bees. PLoS One. doi:10.1371/journal.pone.0060446

    PubMed  PubMed Central  Google Scholar 

  • Hopkin SP (2007) A key to the Collembola (Springtails) of Britain and Ireland. Field Studies Council

  • Jactel H, Brockerhoff EG (2007) Tree diversity reduces herbivory by forest insects. Ecol Lett 10:835–848. doi:10.1111/j.1461-0248.2007.01073.x

    Article  PubMed  Google Scholar 

  • Jactel H, Brockerhoff EG, Duelli P (2005) A test of the biodiversity–stability theory: meta-analysis of tree species diversity effects on insect pest infestations, and re-examination of responsible factors. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest divers functional template boreal system. Springer, Heidelberg, pp 235–262

    Chapter  Google Scholar 

  • Jeffries JM, Marquis RJ, Forkner RE (2006) Forest age influences oak insect herbivore community structure, richness, and density. Ecol Appl 16:901–912. doi:10.1890/1051-0761(2006)016[0901:FAIOIH]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Jost L (2006) Entropy and diversity. Oikos 113:363–375. doi:10.1111/j.2006.0030-1299.14714.x

    Article  Google Scholar 

  • Jukes MR, Ferris R, Peace AJ (2002) The influence of stand structure and composition on diversity of canopy Coleoptera in coniferous plantations in Britain. For Ecol Manage 163:27–41. doi:10.1016/S0378-1127(01)00536-9

    Article  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR et al (2010) Picante: r tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464. doi:10.1093/bioinformatics/btq166

    Article  PubMed  CAS  Google Scholar 

  • Kennedy CEJ, Southwood TRE (1984) The number of species of insects associated with British tree: a re-analysis. J Anim Ecol 53:455–478

    Article  Google Scholar 

  • Kirk WDJ (1996) Thrips. Richmond Publishing

  • Koricheva J, Mulder CP, Schmid B et al (2000) Numerical responses of different trophic groups of invertebrates to manipulations of plant diversity in grasslands. Oecologia 125:271–282. doi:10.1007/s004420000450

    Article  PubMed  CAS  Google Scholar 

  • Kremen C, Colwell RK, Erwin TL et al (1993) Terrestrial arthropod their use in assemblages: conservation planning. Conserv Biol 7:796–808

    Article  Google Scholar 

  • Larrivée M, Buddle CM (2009) Diversity of canopy and understorey spiders in north-temperate hardwood forests. Agric For Entomol 11:225–237. doi:10.1111/j.1461-9563.2008.00421.x

    Article  Google Scholar 

  • Lawton JH (1983) Plant architecture and the diversity of phytophagous insects. Annu Rev Entomol 28:23–39. doi:10.1146/annurev.en.28.010183.000323

    Article  Google Scholar 

  • Majer JD (1987) The conservation and study of invertebrates in remnants of native vegetation. In: Saunders DA, Arnold GW, Burbridge AA, Hopkins AJM (eds) Nature conservation. role remnants native vegetation. Surrey Beatty and Sons, Sydney, pp 333–335

    Google Scholar 

  • Maleque MA, Maleque MA, Ishii HT et al (2006) The use of arthropods as indicators of ecosystem integrity in forest management. J For 104:113–117

    Google Scholar 

  • Maleque MA, Maeto K, Ishii HT (2009) Arthropods as bioindicators of sustainable forest management, with a focus on plantation forests. Appl Entomol Zool 44:1–11. doi:10.1303/aez.2009.1

    Article  Google Scholar 

  • McCullagh PNJA, Nelder JA (1989) Generalized linear models, 2nd edition. Chapman and Hall, London

    Book  Google Scholar 

  • Minelli A, Boxshall G, Fusco G (2013) An introduction to the biology and evolution of arthropods. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod Biol. Springer-Verlag, Berlin, Heidelberg, Evol, pp 1–16

    Chapter  Google Scholar 

  • Moran VC, Southwood TRE (1982) The guild composition of arthropod communities in trees. J Anim Ecol 289–306

  • Müller J, Bae S, Röder J et al (2014) Airborne LiDAR reveals context dependence in the effects of canopy architecture on arthropod diversity. For Ecol Manage 312:129–137. doi:10.1016/j.foreco.2013.10.014

    Article  Google Scholar 

  • Oosterbroek P (2006) The European Families of the Diptera: Identification, diagnosis, biology, 2nd edn. Brill Academic Pub

  • Oxbrough AG, Gittings T, O’Halloran J et al (2005) Structural indicators of spider communities across the forest plantation cycle. For Ecol Manage 212:171–183. doi:10.1016/j.foreco.2005.03.040

    Article  Google Scholar 

  • Oxbrough A, French V, Irwin S et al (2012) Can mixed species stands enhance arthropod diversity in plantation forests. For Ecol Manage 270:11–18. doi:10.1016/j.foreco.2012.01.006

    Article  Google Scholar 

  • Ozanne CM (1999) A comparison of the canopy arthropod communities of coniferous and broad-leaved trees in the United Kingdom. Selbyana 20:290–298

    Google Scholar 

  • Paredes D, Cayuela L, Gurr GM, Campos M (2015) Is ground cover vegetation an effective biological control enhancement strategy against olive pests. PLoS ONE 10:e0117265. doi:10.1371/journal.pone.0117265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Price PW, Denno RF, Eubanks MD et al (2011) Insect ecology, 1st edition. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • R Core Team (2014) A language and environment for statistical computing

  • Recher HF, Majer JD, Ganesh S (1996) Seasonality of canopy invertebrate communities in eucalypt forests of eastern and western Australia. Aust J Ecol 21:64–80. doi:10.1111/j.1442-9993.1996.tb00586.x

    Article  Google Scholar 

  • Régolini M, Castagneyrol B, Dulaurent-mercadal A et al (2014) Tree density and apparency on the probability of attack by the pine processionary moth. For Ecol Manage 334:185–192. doi:10.1016/j.foreco.2014.08.038

    Article  Google Scholar 

  • Root RB (1967) The niche exploitation pattern of the blue-gray Gnatcatcher. Ecol Monogr 37:317–350

    Article  Google Scholar 

  • Root R (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124. doi:10.2307/1942161

    Article  Google Scholar 

  • Salamon J-A, Scheu S, Schaefer M (2008) The Collembola community of pure and mixed stands of beech (Fagus sylvatica) and spruce (Picea abies) of different age. Pedobiologia (Jena) 51:385–396. doi:10.1016/j.pedobi.2007.10.002

    Article  Google Scholar 

  • Scherber C, Vockenhuber E, Stark A et al (2014) Effects of tree and herb biodiversity on Diptera, a hyperdiverse insect order. Oecologia 174:1387–1400. doi:10.1007/s00442-013-2865-7

    Article  PubMed  Google Scholar 

  • Schowalter TD (1989) Canopy arthropod community structure and herbivory in old-growth and regenerating forests in western Oregon. Can J For Res 19:318–322. doi:10.1139/x89-047

    Article  Google Scholar 

  • Schowalter TD, Zhang Y (2005) Canopy arthropod assemblages in four overstory and three understory plant species in a mixed-conifer old-growth forest in California. For Sci 51:233–242

    Google Scholar 

  • Schowalter TD, Stafford SG, Slagle RL (1988) Arboreal arthropod community structure in an early successional coniferous forest ecosystem in western Oregon. Gt Basin Nat 48:327–333

    Google Scholar 

  • Schuldt A, Fahrenholz N, Brauns M et al (2008) Communities of ground-living spiders in deciduous forests: does tree species diversity matter. Biodivers Conserv 17:1267–1284. doi:10.1007/s10531-008-9330-7

    Article  Google Scholar 

  • Setiawan NN, Vanhellemont M, Baeten L et al (2014) The effects of local neighbourhood diversity on pest and disease damage of trees in a young experimental forest. For Ecol Manage 334:1–9. doi:10.1016/j.foreco.2014.08.032

    Article  Google Scholar 

  • Siemann E (1998) Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology 79:2057–2070. doi:10.2307/176709

    Article  Google Scholar 

  • Siemann E, Tilman D, Haarstad J, Ritchie M (1998) Experimental tests of the dependence of arthropod diversity on plant diversity. Am Nat 152:738–750. doi:10.1086/286204

    Article  PubMed  CAS  Google Scholar 

  • Siemann E, Haarstad J, Tilman D (1999) Dynamics of arthropod and plant diversity during old field succession. Ecography (Cop) 22:406–414. doi:10.1111/j.1600-0587.1999.tb00577.x

    Article  Google Scholar 

  • Smith M, Arnold D, Eikenbary R (1996) Influence of ground cover on beneficial arthropods in Pecan. Biol Control 176:164–176. doi:10.1006/bcon.1996.0021

    Article  Google Scholar 

  • Sobek S, Goßner MM, Scherber C et al (2009a) Tree diversity drives abundance and spatiotemporal β-diversity of true bugs (Heteroptera). Ecol Entomol 34:772–782. doi:10.1111/j.1365-2311.2009.01132.x

    Article  Google Scholar 

  • Sobek S, Scherber C, Steffan-Dewenter I, Tscharntke T (2009b) Sapling herbivory, invertebrate herbivores and predators across a natural tree diversity gradient in Germany’s largest connected deciduous forest. Oecologia 160:279–288. doi:10.1007/s00442-009-1304-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Sobek S, Steffan-Dewenter I, Scherber C, Tscharntke T (2009c) Spatiotemporal changes of beetle communities across a tree diversity gradient. Divers Distrib 15:660–670. doi:10.1111/j.1472-4642.2009.00570.x

    Article  Google Scholar 

  • Sousa JP, Da Gama MM, Pinto C et al (2004) Effects of land-use on Collembola diversity patterns in a Mediterranean landscape. Pedobiologia (Jena) 48:609–622. doi:10.1016/j.pedobi.2004.06.004

    Article  Google Scholar 

  • Southwood TRE, Moran VC, Kennedy CEJ (1982) The richness, abundance and biomass of the arthropod communities on trees. J Anim Ecol 51:635–649

    Article  Google Scholar 

  • Southwood TRE, Wint GRW, Kennedy CEJ, Greenwood SR (2004) Seasonality abundance, species richness and specificity of the phytophagous guild of insects on oak (Quercus) canopies. Eur J Entomol 101:43–50

    Article  Google Scholar 

  • Southwood TRE, Wint GRW, Kennedy CEJ, Greenwood SR (2005) The composition of the arthropod fauna of the canopies of some species of oak (Quercus). Eur J Entomol 102:65–72. doi:10.14411/eje.2005.009

    Article  Google Scholar 

  • Spiecker H (2003) Silvicultural management in maintaining biodiversity and resistance of forests in Europe—temperate zone. J Environ Manage 67:55–65. doi:10.1016/S0301-4797(02)00188-3

    Article  PubMed  Google Scholar 

  • Stork NE (1988) Insect diversity: facts, fiction and speculation. Biol J Linn Soc 35:321–337

    Article  Google Scholar 

  • Stork NE, Hammond PM (2013) Species richness and temporal partitioning in the beetle fauna of oak trees (Quercus robur L.) in Richmond Park. UK. Insect Conserv Divers 6:67–81. doi:10.1111/j.1752-4598.2012.00188.x

    Article  Google Scholar 

  • Swanson ME, Franklin JF, Beschta RL et al (2011) The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front Ecol Environ 9:117–125. doi:10.1890/090157

    Article  Google Scholar 

  • Symstad AJ, Siemann E, Haarstad J (2000) An experimental test of the effect of plant functional group diversity on arthropod diversity. Oikos 89:243–253. doi:10.1034/j.1600-0706.2000.890204.x

    Article  Google Scholar 

  • Tahvanainen JO, Root RB (1972) The influence of vegetational diversity on the population ecology of a specialized herbivore, Phyllotreta cruciferae (Coleoptera: chrysomelidae). Oecologia 10:321–346. doi:10.1007/BF00345736

    Article  Google Scholar 

  • Tews J, Brose U, Grimm V et al (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92. doi:10.1046/j.0305-0270.2003.00994.x

    Article  Google Scholar 

  • Uetz G (1991) Habitat structure and spider foraging. In: Bell SS, McCoy ED, Mushinsky HR (eds) Habitat structural physics arrange object species. Springer, Dordrecht, pp 325–348

    Google Scholar 

  • Ulyshen MD (2011) Arthropod vertical stratification in temperate deciduous forests: implications for conservation-oriented management. For Ecol Manage 261:1479–1489. doi:10.1016/j.foreco.2011.01.033

    Article  Google Scholar 

  • Underwood N, Inouye B, Hambäck P (2014) A conceptual framework for associational effects: when do neighbors matter and how would we know. Q Rev Biol 89:1–19. doi:10.1086/674991

    Article  PubMed  Google Scholar 

  • Verheyen K, Ceunen K, Ampoorter E et al (2013) Assessment of the functional role of tree diversity: the multi-site FORBIO experiment. Plant Ecol Evol 146:26–35. doi:10.5091/plecevo.2013.803

    Article  Google Scholar 

  • Verheyen K, Vanhellemont M, Auge H et al (2015) Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio. doi:10.1007/s13280-015-0685-1

    PubMed Central  Google Scholar 

  • Waltz AM, Whitham TG (1997) Plant development effects arthropod communities: opposing impacts of species. Library (Lond) 78:2133–2144. doi:10.2307/2265950

    Google Scholar 

  • Wan NF, Ji XY, Gu XJ et al (2014) Ecological engineering of ground cover vegetation promotes biocontrol services in peach orchards. Ecol Eng 64:62–65. doi:10.1016/j.ecoleng.2013.12.033

    Article  Google Scholar 

  • Wang Y, Naumann U, Wright ST, Warton DI (2012) Mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol Evol 3:471–474. doi:10.1111/j.2041-210X.2012.00190.x

    Article  Google Scholar 

  • Warton DI, Wright ST, Wang Y (2012) Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol Evol 3:89–101. doi:10.1111/j.2041-210X.2011.00127.x

    Article  Google Scholar 

  • Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155. doi:10.1086/303378

    Article  PubMed  Google Scholar 

  • Webb CO, Ackerly DD, Mcpeek MA et al (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505. doi:10.1146/annurev.ecolsys.33.010802.15044

    Article  Google Scholar 

  • Wheeler AG (2001) Biology of the plant bugs (Hemiptera: Miridae), first edit. Cornell University Press, Ithaca

    Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. doi:10.1007/978-0-387-98141-3

  • Wolda H (1988) Insect seasonality: why. Annu Rev Ecol Syst 19:1–18

    Article  Google Scholar 

  • Woodcock BA, Pywell RF (2009) Effects of vegetation structure and floristic diversity on detritivore, herbivore and predatory invertebrates within calcareous grasslands. Biodivers Conserv 19:81–95. doi:10.1007/s10531-009-9703-6

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker N, et al. (2009) Mixed effects models and extensions in ecology with R. doi:10.1007/978-0-387-87458-6

Download references

Acknowledgments

The authors thank Luc Willems for the help on assembling the aspirator. The helpful comments from the editor Nigel Stork and the two anonymous reviewers are greatly acknowledged. The paper was written while NNS was funded by LOTUS Erasmus Mundus Action 2, MV and LB were funded as Postdoctoral Fellows of FWO-Vlaanderen, PDS and WP were funded as Doctoral Fellows of FWO-Vlaanderen.

Funding

The paper was written while NNS was funded by LOTUS Erasmus Mundus Action 2, MV and LB were funded as Postdoctoral Fellows of FWO-Vlaanderen, PDS and WP were funded as Doctoral Fellows of FWO-Vlaanderen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuri Nurlaila Setiawan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Nigel E Stork.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setiawan, N., Vanhellemont, M., Baeten, L. et al. Does neighbourhood tree diversity affect the crown arthropod community in saplings?. Biodivers Conserv 25, 169–185 (2016). https://doi.org/10.1007/s10531-015-1044-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-015-1044-z

Keywords

Navigation