Log in

Expression Profile of Maize MicroRNAs Corresponding to Their Target Genes Under Drought Stress

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Microarray assay of four inbred lines was used to identify 303 microRNAs differentially expressed under drought stress. The microRNAs were used for bioinformatics prediction of their target genes. The majority of the differentially expressed microRNA families showed different expression profiles at different time points of the stress process among the four inbred lines. Digital gene expression profiling revealed 54 genes targeted by 128 of the microRNAs differentially expressed under the same stress conditions. The differential expression of miR159 and miR168 was further validated by locked nucleic acid northern hybridization. These results indicated that miR159 and miR168, as well as numerous other microRNAs, play critical roles in signaling pathways of maize response to drought stress. However, the level of the post-transcriptional regulation mediated by microRNAs had different responses among genotypes, and the gene expression related to signaling pathways under drought stress is also regulated, possibly by multiple mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allen RS, Li J, Alonso-Peral MM, White RG, Gubler F, Millar AA (2010) MicroR159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects. Silence 1:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    PubMed  CAS  Google Scholar 

  • Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19:1750–1769

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Baisakh N, Subudhi PK (2009) Heat stress alters the expression of salt stress induced genes in smooth cordgrass (Spartina alterniflora L.). Plant Physiol Biochem 47:232–235

    Article  PubMed  CAS  Google Scholar 

  • Bonnet E, Wuyts J, Rouze P, van de Peer Y (2004) Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 20:2911–2917

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Yang R-F, Li W-C, Fu F-L (2010) Identification of 21 microRNAs in maize and their differential expression under drought stress. Afr J Biotechnol 9:4741–4753

    Google Scholar 

  • Deikman J, Petracek M, Heard JE (2012) Drought tolerance through biotechnology: improving translation from the laboratory to farmer’s fields. Curr Opin Biotechnol 23:243–250

    Article  PubMed  CAS  Google Scholar 

  • Diedhiou CJ, Popova OV, Dietz K-J, Golldack D (2008) The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Biol 8:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Earley K, Smith MR, Weber R, Gregory BD, Poethig RS (2010) An endogenous F-box protein regulates ARGONAUTE1 in Arabidopsis thaliana. Silence 1:15

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Franza S, Ehlerta B, Liesea A, Kurtha J, Cazaleb A-C, Romeis T (2011) Calcium-dependent protein kinase CPK21 functions in abiotic stress response in Arabidopsis thaliana. Mol Plant 4:83–96

    Article  Google Scholar 

  • Fu FL, Feng ZL, Gao SB, Zhou SF, Li WC (2008) Evaluation and quantitative inheritance of several drought-relative traits in maize. Agric Sci China 7:280–290

    Article  Google Scholar 

  • Henriksson E, Olsson ASB, Johannesson H, Hanson J, Engstrom P, Soderman E (2005) Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogeneitc realationships. Plant Physiol 139:509–518

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jacquot J-P, Eklund H, Rouhier N, Schurmann P (2009) Structural and evolutionary aspects of thioredoxin reductases in photosynthetic organisms. Trends Plant Sci 14:336–343

    Article  PubMed  CAS  Google Scholar 

  • Jiang T, Fountain J, Davis G, Kemerait R, Scully B, Lee RD, Guo B (2012) Root morphology and gene expression analysis in response to drought stress in maize (Zea mays). Plant Mol Biol Rep 30:360–369

    Article  CAS  Google Scholar 

  • Jiao Y, Song W, Zhang M, Lai J (2011) Identification of novel maize miRNAs by measureing the precision of precursor processing. BMC Plant Biol 11:141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kadioglu A, Saruhan N, Saglam A, Terzi R, Acet T (2011) Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regul 64:27–37

    Article  CAS  Google Scholar 

  • Khraiwesh B, Zhu J-K, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim SW, Li Z, Moore PS, Monaghan AP, Chang Y, Nichols M, John B (2010) A sensitive nonradioactive northern blot method to detect small RNAs. Nucleic Acids Res 38:e98

    Article  PubMed  PubMed Central  Google Scholar 

  • Kufner I, Koch W (2008) Stress regulated members of the plant organic cation transporter family are localized to the vacuolar membrane. BMC Res Note 1:43

    Article  Google Scholar 

  • Lackey E, Ng DW, Chen ZJ (2010) RNAi-mediated down-regulation of DCL1 and AGO1 induces developmental changes in resynthesized Arabidopsis allotetraploids. New Phytol 186:207–215

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lin F, Xu J, Shi J, Li H, Li B (2010) Molecular cloning and characterization of a novel glyoxalase I gene TaGly I in wheat (Triticum aestivum L.). Mol Biol Rep 37:729–735

    Article  PubMed  CAS  Google Scholar 

  • Liu H–H, Tian X, Li Y-J, Wu C-A, Zheng C–C (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu Q, Chen Y-Q (2010) A new mechanism in plant engineering: the potential roles of microRNAs in molecular breeding for crop improvement. Biotechnol Adv 28:301–307

    Article  PubMed  CAS  Google Scholar 

  • Lu SF, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Hao Z, **e C, Crossa J, Araus J-L, Gao S, Vivek BS, Magorokosho C, Mugo S, Makumbi D, Taba S, Pan G, Li X, Rong T, Zhang S, Xu Y (2011) Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crop Res 124:37–45

    Article  Google Scholar 

  • Mao XG, Zhang HY, Tian SJ, Chang XP, **g RL (2010) TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multi stress tolerance in Arabidopsis. J Exp Bot 61:683–696

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Meng Y, Huang F, Shi Q, Cao J, Chen D, Zhang J, Ni J, Wu P, Chen M (2009) Genome-wide survey of rice microRNAs and microRNA target pairs in the root of a novel auxin-resistant mutant. Planta 230:883–898

    Article  PubMed  CAS  Google Scholar 

  • Michel BE, Kaufmann MR (1973) The osmotic potential of polyethylene glycol 6000. Plant Physiol 51:914–916

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Monroe-Augustus M, Zolman BK, Bartel B (2003) IBR5, a dual-specificity phosphatase-like protein modulating auxin and abscisic acid responsiveness in Arabidopsis. Plant Cell 15:2979–2991

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nayidu NK, Wang L, **e W, Zhang C, Fan C, Lian X, Zhang Q, **ong L (2002) Comprehensive sequence and expression profile analysis of PEX11 gene family in rice. Gene 412:59–70

    Article  Google Scholar 

  • Neumann PM (2008) Co** mechanisms for crop plants in drought-prone environments. Ann Bot 101:901–907

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  PubMed  CAS  Google Scholar 

  • Rafudeen S, Gxaba G, Makgoke G, Bradley G, Pironcheva G, Raitt L, Irving H, Gehring C (2003) A role for plant natriuretic peptide immuno-analogues in NaCl- and drought-stress responses. Physiol Plant 119:554–562

    Article  CAS  Google Scholar 

  • Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606

    Article  PubMed  CAS  Google Scholar 

  • Ruan XM, Luo F, Li DD, Zhang J, Liu ZH, Xu WL, Huang GQ, Li XB (2011) Cotton BCP genes encoding putative blue copper binding proteins are functionally expressed in fiber development and involved in response to high-salinity and heavy metal stresses. Physiol Plant 141:71–83

    Article  PubMed  CAS  Google Scholar 

  • Seo PJ, Ryu J, Kang SK, Park C-M (2011) Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis. Plant J 65:418–429

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Li Y-F, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trend Plant Sci 17:196–203

    Article  CAS  Google Scholar 

  • Tambo JA, Abdoulaye T (2012) Climate change and agricultural technology adoption the case of drought tolerant maize in rural Nigeria. Mitig Adapt Strategy Global Change 17:277–292

    Article  Google Scholar 

  • Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stressinducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Valoczi A, Hornyik C, Varga N, Burgyan J, Kauppinen S, Havelda Z (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 32:e175

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaucheret H (2009) AGO1 homeostasis involves differential production of 21-nt and 22-nt miR168 species by miR168a and miR168b. PLoS One 4:e6442

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaucheret H, Mallory AC, Bartel DP (2006) AGO1 homeostasis entails coexpression of minR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 22:129–136

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang T, Chen L, Zhao M, Tian Q, Zhang W-H (2011) Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics 12:367

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wei L, Zhang D, **ang F, Zhang Z (2009) Differentially expressed miRNAs potentially involved in the regulation of defense mechanism to drought stress in maize seedlings. Int J Plant Sci 170:979–989

    Article  CAS  Google Scholar 

  • Wu J, Qu T, Chen S, Zhao Z, An L (2009) Molecular cloning and characterization of a γ-glutamylcysteine synthetase gene from Chorispora bungeana. Protoplasma 235:27–36

    Article  PubMed  CAS  Google Scholar 

  • Zhang BH, Pan XP, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Chia J-M, Kumari S, Stein JC, Liu Z, Narechania A, Maher CA, Guill K, McMullen MD, Ware D (2009) A genome-wide characterization of microRNA genes in maize. PLoS Genet 5:e1000716

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Wei L, Zou X, Tao Y, Liu Z, Zheng Y (2008) Submergence-responsive microRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Ann Bot 102:509–519

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Z, Lin H, Shen Y, Gao J, **ang K, Liu L, Ding H, Yuan G, Lan H, Zhou S, Zhao M, Gao S, Rong T, Pan G (2012) Cloning and characterization of miRNAs from maize seedling roots under low phosphorus stress. Mol Biol Rep 39:8137–8146

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao M, Tai H, Sun S, Zhang F, Xu Y, Li W-X (2012) Cloning and characterization of maize miRNAs involved in responses to nitrogen efficiency. PLoS One 7:e29669

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial support from the National Key Science and Technology Special Project (2013ZX08003-004), the National Natural Science Foundation of China (30971795 and 31071433), and technical support from the Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region are sincerely appreciated. The authors thank the anonymous reviewers and the editor for their critical reading and modification suggestion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wan-Chen Li or Feng-Ling Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YG., An, M., Zhou, SF. et al. Expression Profile of Maize MicroRNAs Corresponding to Their Target Genes Under Drought Stress. Biochem Genet 52, 474–493 (2014). https://doi.org/10.1007/s10528-014-9661-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-014-9661-x

Keywords

Navigation