Log in

Analysis of Methylome of Different Forms of Basal Cell Hyperplasia and Squamous Cell Metaplasia of Bronchial Epithelium

  • ONCOLOGY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Squamous cell lung cancer (SCLC) occurs as a result of dysregenerative changes in the bronchial epithelium: basal cell hyperplasia (BCH), squamous cell metaplasia (SM), and dysplasia. We previously suggested that combinations of precancerous changes detected in the small bronchi of patients with SCLC may reflect various “scenarios” of the precancerous process: isolated BCH→stop** at the stage of hyperplasia, BCH+SM→progression of hyperplasia into metaplasia, SM+dysplasia→progression of metaplasia into dysplasia. In this study, DNA methylome of various forms of precancerous changes in the bronchial epithelium of SCLC patients was analyzed using the genome-wide bisulfite sequencing. In BCH combined with SM, in contrast to isolated BCH, differentially methylated regions were identified in genes of the pathogenetically significant MET signaling pathway (RNMT, HPN). Differentially methylated regions affecting genes involved in inflammation regulation (IL-23, IL-23R, IL12B, IL12RB1, and FIS1) were detected in SM combined with dysplasia in comparison with SM combined with BCH. The revealed changes in DNA methylation may underlie various “scenarios” of the precancerous process in the bronchial epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Denisov EV, Schegoleva AA, Gervas PA, Ponomaryova AA, Tashireva LA, Boyarko VV, Bukreeva EB, Pankova OV, Perelmuter VM. Premalignant lesions of squamous cell carcinoma of the lung: The molecular make-up and factors affecting their progression. Lung Cancer. 2019;135:21-28. doi: https://doi.org/10.1016/j.lungcan.2019.07.001

    Article  PubMed  Google Scholar 

  2. Nan Y, Du J, Ma L, Jiang H, ** F, Yang S. Early Candidate Biomarkers of Non-Small Cell Lung Cancer Are Screened and Identified in Premalignant Lung Lesions. Technol. Cancer Res. Treat. 2017;16(1):66-74. doi: https://doi.org/10.1177/1533034615627391

    Article  CAS  PubMed  Google Scholar 

  3. Ooi AT, Gower AC, Zhang KX, Vick JL, Hong L, Nagao B, Wallace WD, Elashoff DA, Walser TC, Dubinett SM, Pellegrini M, Lenburg ME, Spira A, Gomperts BN. Molecular profiling of premalignant lesions in lung squamous cell carcinomas identifies mechanisms involved in stepwise carcinogenesis. Cancer Prev. Res. (Phila). 2014;7(5):487-495. doi: https://doi.org/10.1158/1940-6207.CAPR-13-0372

    Article  CAS  PubMed  Google Scholar 

  4. Giroux V, Rustgi AK. Metaplasia: tissue injury adaptation and a precursor to the dysplasia-cancer sequence. Nat. Rev. Cancer. 2017;17(10):594-604. doi: https://doi.org/10.1038/nrc.2017.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pankova OV, Denisov EV, Ponomaryova AA, Gerashchenko TS, Tuzikov SA, Perelmuter VM. Recurrence of squamous cell lung carcinoma is associated with the co-presence of reactive lesions in tumor-adjacent bronchial epithelium. Tumour Biol. 2016;37(3):3599-3607. doi: https://doi.org/10.1007/s13277-015-4196-2

    Article  CAS  PubMed  Google Scholar 

  6. Denisov EV, Schegoleva AA, Gerashchenko TS, Skryabin NA, Sleptcov AA, Yakushina VD, Lyapunova LS, Tuzikov SA, Pankova OV, Perelmuter VM. Gene Expression Profiling Revealed 2 Types of Bronchial Basal Cell Hyperplasia and Squamous Metaplasia With Different Progression Potentials. Appl. Immunohistochem. Mol. Morphol. 2020;28(6):477-483. doi: https://doi.org/10.1097/PAI.0000000000000762

    Article  CAS  PubMed  Google Scholar 

  7. Pankova OV, Tashireva LA, Rodionov EO, Miller SV, Tuzikov SA, Pismenny DS, Gerashchenko TS, Zavyalova MV, Vtorushin SV, Denisov EV, Perelmuter VM. Premalignant Changes in the Bronchial Epithelium Are Prognostic Factors of Distant Metastasis in Non-Small Cell Lung Cancer Patients. Front. Oncol. 2021;11:771802. doi: https://doi.org/10.3389/fonc.2021.771802

    Article  PubMed  PubMed Central  Google Scholar 

  8. Locke WJ, Guanzon D, Ma C, Liew YJ, Duesing KR, Fung KYC, Ross JP. DNA Methylation Cancer Biomarkers: Translation to the Clinic. Front. Genet. 2019;10:1150. doi: https://doi.org/10.3389/fgene.2019.01150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Slot E, Boers R, Boers J, van IJcken WFJ, Tibboel D, Gribnau J, Rottier R, de Klein A. Genome wide DNA methylation analysis of alveolar capillary dysplasia lung tissue reveals aberrant methylation of genes involved in development including the FOXF1 locus. Clin. Epigenetics. 2021;13(1):148. https://doi.org/10.1186/s13148-021-01134-1

  10. Hu X, Estecio MR, Chen R, Reuben A, Wang L, Fujimoto J. Evolution of DNA methylome from precancerous lesions to invasive lung adenocarcinomas. Nat. Commun. 2021;12(1):687. doi: https://doi.org/10.1038/s41467-021-20907-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG. Introduction to The 2015 World Health Organization Classification of Tumors of the Lung, Pleura, Thymus, and Heart. J. Thorac. Oncol. 2015;10(9):1240-1242. doi: https://doi.org/10.1097/JTO.0000000000000663

    Article  PubMed  Google Scholar 

  12. Kerr KM. The classification of pre-invasive lesions. Molecular Pathology of Lung Cancer. New York, 2012. P. 35-52. https://doi.org/10.1007/978-1-4614-3197-8_5

  13. Park Y, Figueroa EM, Rozek SL, Sartor AM. MethylSig: a whole genome DNA methylation analysis pipeline. Bioinformatics. 2014;30(17):2414-2422. doi: https://doi.org/10.1093/bioinformatics/btu339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ning B, Tilston-Lunel AM, Simonetti J, Hicks-Berthet J, Matschulat A, Pfefferkorn R, Spira A, Edwards M, Mazzilli S, Lenburg ME, Beane JE, Varelas X. Convergence of YAP/TAZ, TEAD and TP63 activity is associated with bronchial premalignant severity and progression. J. Exp. Clin. Cancer Res. 2023;42(1):116. doi: https://doi.org/10.1186/s13046-023-02674-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen WT, Ebelt ND, Stracker TH, Xhemalce B, Van Den Berg CL, Miller KM. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion. Elife. 2015;4:e07270. doi: https://doi.org/10.7554/eLife.07270

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hassan WA, Yoshida R, Kudoh S, Motooka Y, Ito T. Evaluation of role of Notch3 signaling pathway in human lung cancer cells. J. Cancer Res. Clin. Oncol. 2016;142(5):981-993. doi: https://doi.org/10.1007/s00432-016-2117-4

    Article  CAS  PubMed  Google Scholar 

  17. Weng MS, Chang JH, Hung WY, Yang YC, Chien MH. The interplay of reactive oxygen species and the epidermal growth factor receptor in tumor progression and drug resistance. J. Exp. Clin. Cancer Res. 2018;37(1):61. doi: https://doi.org/10.1186/s13046-018-0728-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li H, Zhang H, Huang G, Bing Z, Xu D, Liu J, Luo H, An X. Loss of RPS27a expression regulates the cell cycle, apoptosis, and proliferation via the RPL11-MDM2-p53 pathway in lung adenocarcinoma cells. J. Exp. Clin. Cancer Res. 2022;41(1):33. doi: https://doi.org/10.1186/s13046-021-02230-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang YT, Cheng AC, Tang HC, Huang GC, Cai L, Lin TH, Wu KJ, Tseng PH, Wang GG, Chen WY. USP7 facilitates SMAD3 autoregulation to repress cancer progression in p53-deficient lung cancer. Cell Death Dis. 2021;12(10):880. doi: https://doi.org/10.1038/s41419-021-04176-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang H, Lv Q, Xu Y, Cai Z, Zheng J, Cheng X, Dai Y, Jänne PA, Ambrogio C, Köhler J. An integrative pharmacogenomics analysis identifies therapeutic targets in KRAS-mutant lung cancer. EBioMedicine. 2019;49:106-117. doi: https://doi.org/10.1016/j.ebiom.2019.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ponomaroyva.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 177, No. 1, pp. 107-112, January, 2024

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomaroyva, A.A., Schegoleva, A.A., Gervas, P.A. et al. Analysis of Methylome of Different Forms of Basal Cell Hyperplasia and Squamous Cell Metaplasia of Bronchial Epithelium. Bull Exp Biol Med (2024). https://doi.org/10.1007/s10517-024-06138-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10517-024-06138-4

Keywords

Navigation