Log in

Microalbuminuria in Rats Treated with D-Nitroarginine Methyl Ether

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Microalbuminuria is an early symptom and prognostic marker of the progression of renal pathology. The analysis of the role of anionic components of the renal glomeruli in the albumin retention and the development of a model of minimal changes in the glomerular filter leading to the appearance of microalbuminuria are relevant. The effect of organic cations D-arginine methyl esters (D-AME) and D-nitroarginine (D-NAME) on the excretion of albumin by the kidneys in rats was studied. D-AME had no effect on urinary albumin excretion in rats. D-NAME caused microalbuminuria, which persisted for more than a day and sharply increased after injection of vasopressin. The number of anionic sites labeled with polyethyleneimine decreased in the structures of the glomerular filter. D-NAME-induced microalbuminuria can later serve as a model for studying nephroprotective or damaging factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Comper WD. The limited role of the glomerular endothelial cell glycocalyx as a barrier to transglomerular albumin transport. Connect. Tissue Res. 2014;55:1:2-7. https://doi.org/10.3109/03008207.2013.867334

    Article  CAS  PubMed  Google Scholar 

  2. Ballermann BJ, Nyström J, Haraldsson B. The glomerular endothelium restricts albumin filtration. Front. Med. (Lausanne). 2021;8:766689. https://doi.org/10.3389/fmed.2021.766689

  3. Daehn IS, Duffield JS. The glomerular filtration barrier: a structural target for novel kidney therapies. Nat. Rev. Drug Discov. 2021;20(10):770-788. https://doi.org/10.1038/s41573-021-00242-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Farquhar MG. The glomerular basement membrane: not gone, just forgotten. J. Clin. Invest. 2006;116(8):2090-2093. https://doi.org/10.1172/JCI29488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Verdecchia P, Reboldi GP. Hypertension and microalbuminuria: the new detrimental duo. Blood Press. 2004;13(4):198-211. https://doi.org/10.1080/08037050410016456

    Article  CAS  PubMed  Google Scholar 

  6. Ruggenenti P, Porrini EL, Gaspari F, Motterlini N, Cannata A, Carrara F, Cella C, Ferrari S, Stucchi N, Parvanova A, Iliev I, Dodesini AR, Trevisan R, Bossi A, Zaletel J, Remuzzi G; GFR Study Investigators. Glomerular hyperfiltration and renal disease progression in type 2 diabetes. Diabetes Care. 2012;35(10):2061-2068. https://doi.org/10.2337/dc11-2189

  7. Lepedda AJ, De Muro P, Capobianco G, Formato M. Significance of urinary glycosaminoglycans/proteoglycans in the evaluation of type 1 and type 2 diabetes complications. J. Diabetes Complications. 2017;31(1):149-155. https://doi.org/10.1016/j.jdiacomp.2016.10.013

    Article  PubMed  Google Scholar 

  8. Chen S, Wassenhove-McCarthy DJ, Yamaguchi Y, Holzman LB, van Kuppevelt TH, Jenniskens GJ, Wijnhoven TJ, Woods AC, McCarthy KJ. Loss of heparan sulfate glycosaminoglycan assembly in podocytes does not lead to proteinuria. Kidney Int. 2008;74(3):289-299. https://doi.org/10.1038/ki.2008.159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van den Hoven MJ, Wijnhoven TJ, Li JP, Zcharia E, Dijkman HB, Wismans RG, Rops AL, Lensen JF, van den Heuvel LP, van Kuppevelt TH, Vlodavsky I, Berden JH, van der Vlag J. Reduction of anionic sites in the glomerular basement membrane by heparanase does not lead to proteinuria. Kidney Int. 2008;73(3):278-287. https://doi.org/10.1038/sj.ki.5002706

    Article  CAS  PubMed  Google Scholar 

  10. Fridén V, Oveland E, Tenstad O, Ebefors K, Nyström J, Nilsson UA, Haraldsson B. The glomerular endothelial cell coat is essential for glomerular filtration. Kidney Int. 2011;79(12):1322-1330. https://doi.org/10.1038/ki.2011.58

    Article  CAS  PubMed  Google Scholar 

  11. Sugar T, Wassenhove-McCarthy DJ, Esko JD, van Kuppevelt TH, Holzman L, McCarthy KJ. Podocyte-specific deletion of NDST1, a key enzyme in the sulfation of heparan sulfate glycosaminoglycans, leads to abnormalities in podocyte organization in vivo. Kidney Int. 2014;85(2):307-318. https://doi.org/10.1038/ki.2013.281

    Article  CAS  PubMed  Google Scholar 

  12. Gutsol AA, Blanco P, Hale TM, Thibodeau JF, Holterman CE, Nasrallah R, Correa JWN, Afanasiev SA, Touyz RM, Kennedy CRJ, Burger D, Hébert RL, Burns KD. Comparative analysis of hypertensive nephrosclerosis in animal models of hypertension and its relevance to human pathology. Glomerulopathy. PLoS One. 2022;17(2):e0264136. https://doi.org/10.1371/journal.pone.0264136

    Article  CAS  PubMed  Google Scholar 

  13. Silva PH, Silva PH, Corazza AV, Silva JGD, Silva IS. Experimental model of nephropathy associated with diabetes mellitus in mice. Acta Cir. Bras. 2023;38:e381123. https://doi.org/10.1590/acb381123

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kutina AV, Shakhmatova EI, Natochin YV. Effect of a blocker of nitric oxide production on albumin excretion by rat kidney. Bull. Exp. Biol. Med. 2011;150(6):693-695. https://doi.org/10.1007/s10517-011-1225-z

    Article  CAS  PubMed  Google Scholar 

  15. Sivak KV, Zabrodskaya YaA, Dobrovolskaya OA. Approval of the method of electrophoretic separation and identification of some urine proteins in rats with toxic nephropathy. Med. Akad. Zh. 2019;19(3):71-82. Russian. https://doi.org/10.17816/MAJ19371-82

  16. Ebefors K, Bergwall L, Nyström J. The glomerulus according to the mesangium. Front. Med. (Lausanne). 2022;8:740527. https://doi.org/10.3389/fmed.2021.740527

  17. Seliverstova EV, Prutskova NP. Receptor-mediated endocytosis of lysozyme in renal proximal tubules of the frog Rana temporaria. Eur. J. Histochem. 2015;59(2):2482. https://doi.org/10.4081/ejh.2015.2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kutina.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 176, No. 10, pp. 432-437, October, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balbotkina, E.V., Karavashkina, T.A., Seliverstova, E.V. et al. Microalbuminuria in Rats Treated with D-Nitroarginine Methyl Ether. Bull Exp Biol Med 176, 437–441 (2024). https://doi.org/10.1007/s10517-024-06042-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-024-06042-x

Key Words

Navigation