Log in

Sepsis-Induced Inhibition of Contractile Function of Lymphatic Nodes

  • PHYSIOLOGY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Inflammation accompanies most pathological processes, while the lymphatic system takes part in both the development and resolution of inflammation. We studied the contractile function of rat lymph nodes after cecal ligation and puncture (CLP). In 24 h after CLP, the mesenteric lymph nodes were removed and placed in the myograph chamber. After CLP, the lymph nodes showed lower tension than lymph nodes from sham-operated animals (control). The expression of inducible NO synthase, cyclooxygenase-2, and cystathionine-γ-lyase was observed in the lymph nodes of CLP rats. NO, prostaglandins, and H2S formed during inflammation inhibited contractile activity of smooth muscle cells in the capsule of the lymph nodes, which manifested itself in inhibition of phase contractions and a decrease in the tone of their capsule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic vessel network structure and physiology. Compr. Physiol. 2018;9(1):207-299. https://doi.org/10.1002/cphy.c180015

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lobov GI, Pan’kova MN. Heparin inhibits contraction of smooth muscle cells in lymphatic vessels. Bull. Exp. Biol. Med. 2010;149(1):4-6. https://doi.org/10.1007/s10517-010-0860-0

  3. Liao S, von der Weid PY. Lymphatic system: an active pathway for immune protection. Semin. Cell Dev. Biol. 2015;38:83-89. https://doi.org/10.1016/j.semcdb.2014.11.012

    Article  CAS  PubMed  Google Scholar 

  4. Ohtani O, Ohtani Y. Structure and function of rat lymph nodes. Arch. Histol. Cytol. 2008;71(2):69-76. https://doi.org/10.1679/aohc.71.69

    Article  PubMed  Google Scholar 

  5. Cleypool CGJ, Mackaaij C, Lotgerink Bruinenberg D, Schurink B, Bleys RLAW. Sympathetic nerve distribution in human lymph nodes. J. Anat. 2021;239(2):282-289. https://doi.org/10.1111/joa.13422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lobov GI, Pan’kova MN. Lymph flow: role of lymph nodes. Regionar. Krovoobr. Mikrotsirk. 2012;11(2):52-56. Russian. https://doi.org/10.24884/1682-6655-2012-11-2-52-56

  7. Arasa J, Collado-Diaz V, Kritikos I, Medina-Sanchez JD, Friess MC, Sigmund EC, Schineis P, Hunter MC, Tacconi C, Paterson N, Nagasawa T, Kiefer F, Makinen T, Detmar M, Moser M, Lämmermann T, Halin C. Upregulation of VCAM-1 in lymphatic collectors supports dendritic cell entry and rapid migration to lymph nodes in inflammation. J. Exp. Med. 2021;218(7):e20201413. https://doi.org/10.1084/jem.20201413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garcia LF, Singh V, Mireles B, Dwivedi AK, Walker WE. Common Variables That Influence Sepsis Mortality in Mice. J. Inflamm. Res. 2023;16:1121-1134. https://doi.org/10.2147/JIR.S400115

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bouta EM, Wood RW, Perry SW, Brown EB, Ritchlin CT, **ng L, Schwarz EM. Measuring intranodal pressure and lymph viscosity to elucidate mechanisms of arthritic flare and therapeutic outcomes. Ann. NY Acad. Sci. 2011;1240:47-52. https://doi.org/10.1111/j.1749-6632.2011.06237.x

    Article  ADS  PubMed  Google Scholar 

  10. Zhang N, Deng J, Wu F, Lu X, Huang L, Zhao M. Expression of arginase I and inducible nitric oxide synthase in the peripheral blood and lymph nodes of HIV-positive patients. Mol. Med. Rep. 2016;13(1):731-743. https://doi.org/10.3892/mmr.2015.4601

    Article  CAS  PubMed  Google Scholar 

  11. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011;31(5):986-1000. https://doi.org/10.1161/ATVBAHA.110.207449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dunn WR, Alexander SP, Ralevic V, Roberts RE. Effects of hydrogen sulphide in smooth muscle. Pharmacol. Ther. 2016;158:101-113. https://doi.org/10.1016/j.pharmthera.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  13. Lo Faro ML, Fox B, Whatmore JL, Winyard PG, Whiteman M. Hydrogen sulfide and nitric oxide interactions in inflammation. Nitric Oxide. 2014;41:38-47. https://doi.org/10.1016/j.niox.2014.05.014

    Article  CAS  PubMed  Google Scholar 

  14. Tripatara P, Patel NS, Collino M, Gallicchio M, Kieswich J, Castiglia S, Benetti E, Stewart KN, Brown PA, Yaqoob MM, Fantozzi R, Thiemermann C. Generation of endogenous hydrogen sulfide by cystathionine gamma-lyase limits renal ischemia/reperfusion injury and dysfunction. Lab. Invest. 2008;88(10):1038-1048. https://doi.org/10.1038/labinvest.2008.73

    Article  CAS  PubMed  Google Scholar 

  15. Miller TW, Wang EA, Gould S, Stein EV, Kaur S, Lim L, Amarnath S, Fowler DH, Roberts DD. Hydrogen sulfide is an endogenous potentiator of T cell activation. J. Biol. Chem. 2012;287(6):4211-4221. https://doi.org/10.1074/jbc.M111.307819

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Lobov.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 176, No. 9, pp. 280-285, September, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosareva, M.E., Chivildeev, A.V. & Lobov, G.I. Sepsis-Induced Inhibition of Contractile Function of Lymphatic Nodes. Bull Exp Biol Med 176, 305–309 (2024). https://doi.org/10.1007/s10517-024-06013-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-024-06013-2

Keywords

Navigation