Log in

Role of α7 Nicotinic Acetylcholine Receptors in Synaptic Transmission in Frog Neuromuscular Contacts

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The role of α7 nicotinic acetylcholine receptors in coupling of synaptic activity and muscle contractions was studied in frog (Rana ridibunda) neuromuscular synapses. The amplitude of endplate currents, the probability of action potential generation, and the strength of muscle contractions decreased in the presence of selective α7 antagonist methyllycaconitine. The effects of nicotinic acetylcholine receptor blockade depended on the pattern of the motor nerve stimulation. It can be assumed that the muscle action potential is a factor of retrograde control of neurosecretion, which modulates activity of α7 nicotinic receptors and the release of acetylcholine from motor nerve endings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kovyazina IV, Kopylova NV, Utkin YuN, Bukharaeva EA, Nikolsky EE, Vulfius CA. Depression of the evoked quantal acetylcholine secretion in frog neuromuscular junction by phospholipases A2 from the venom of steppe viper Vipera ursinii renardi. Biol. Memrany. 2018;35(1):71-78. doi: https://doi.org/10.7868/S0233475518010085. Russian.

    Article  CAS  Google Scholar 

  2. Fedorin VV, Balezina OP. Participation of the neuronal nicotinic acetylcholine receptors in the regulation of the neurosecretion in the mouse neuromuscular synapses. Neirokhimiya. 2008;25(1):99-104. Russian.

    Google Scholar 

  3. Campanucci VA, Krishnaswamy A, Cooper E. Mitochondrial reactive oxygen species inactivate neuronal nicotinic acetylcholine receptors and induce long-term depression of fast nicotinic synaptic transmission. J. Neurosci. 2008;28(7):1733-1744. doi: https://doi.org/10.1523/JNEUROSCI.5130-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gottmann K. Transsynaptic modulation of the synaptic vesicle cycle by cell-adhesion molecules. J. Neurosci. Res. 2008;86(2):223-232. doi: https://doi.org/10.1002/jnr.21484

    Article  CAS  PubMed  Google Scholar 

  5. Heredia DJ, Schubert D, Maligireddy S, Hennig GW, Gould TW. A novel striated muscle-specific myosin-blocking drug for the study of neuromuscular physiology. Front. Cell. Neurosci. 2016;10:276. doi: https://doi.org/10.3389/fncel.2016.00276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Iremonger KJ, Wamsteeker Cusulin JI, Bains JS. Changing the tune: plasticity and adaptation of retrograde signals. Trends Neurosci. 2013;36(8):471-479. doi: https://doi.org/10.1016/j.tins.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  7. Krishnaswamy A, Cooper E. Reactive oxygen species inactivate neuronal nicotinic acetylcholine receptors through a highly conserved cysteine near the intracellular mouth of the channel: implications for diseases that involve oxidative stress. J. Physiol. 2012;590(1):39-47. doi: https://doi.org/10.1113/jphysiol.2011.214007

    Article  CAS  PubMed  Google Scholar 

  8. Ouanounou G, Baux G, Bal T. A novel synaptic plasticity rule explains homeostasis of neuromuscular transmission. Elife. 2016;5:e12190. doi: https://doi.org/10.7554/eLife.12190

    Article  PubMed  PubMed Central  Google Scholar 

  9. Petrov KA, Girard E, Nikitashina AD, Colasante C, Bernard V, Nurullin L, Leroy J, Samigullin D, Colak O, Nikolsky E, Plaud B, Krejci E. Schwann cells sense and control acetylcholine spillover at the neuromuscular junction by α7 nicotinic receptors and butyrylcholinesterase. J. Neurosci. 2014;34(36):11870-11883. doi: https://doi.org/10.1523/JNEUROSCI.0329-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rogers M, Sargent PB. Rapid activation of presynaptic nicotinic acetylcholine receptors by nerve-released transmitter. Eur. J. Neurosci. 2003;18(11):2946-2956. doi: https://doi.org/10.1111/j.1460-9568.2003.03064.x

    Article  PubMed  Google Scholar 

  11. Shen JX, Yakel JL. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system. Acta Pharmacol. Sin. 2009;30(6):673-680. doi: https://doi.org/10.1038/aps.2009.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsuneki H, Klink R, Léna C, Korn H, Changeux JP. Calcium mobilization elicited by two types of nicotinic acetylcholine receptors in mouse substantia nigra pars compacta. Eur. J. Neurosci. 2000;12(7):2475-2485. doi: https://doi.org/10.1046/j.1460-9568.2000.00138.x

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Pinter MJ, Rich MM. Reversible recruitment of a homeostatic reserve pool of synaptic vesicles underlies rapid homeostatic plasticity of quantal content. J. Neurosci. 2016;36(3):828-836. doi: https://doi.org/10.1523/JNEUROSCI.3786-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kovyazina.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 172, No. 11, pp. 564-569, November, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenina, O.A., Kovyazina, I.V. Role of α7 Nicotinic Acetylcholine Receptors in Synaptic Transmission in Frog Neuromuscular Contacts. Bull Exp Biol Med 172, 534–538 (2022). https://doi.org/10.1007/s10517-022-05427-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-022-05427-0

Key Words

Navigation