Log in

Expression of Circulating Rennin—Angiotensin—Aldosterone-Related microRNAs in Patients with Thyrotoxic Heart Disease

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Thyrotoxic heart disease (THD) is a common and severe complication of hyperthyroidism and the etiology of this complication remains poorly understood. Activation of the rennin—angiotensin— aldosterone system by excess thyroxin is one of the major factors that contribute to the pathogenesis of THD. Several microRNAs such as miR-21, miR-155, miR-208a, and miR-499 are closely related to the rennin—angiotensin—aldosterone system and therefore should be involved in this process. Our study intends to explore whether these miRNAs are involved in the pathogenesis of THD, and if these miRNAs could be secreted into the circulation and serve as sentinel indicators for THD. Though there is a trend of elevation of miR- 155 in THD than in simple hyperthyroidism patients, we did not find statistically significant differences in the expression of these miRNAs in the blood of THD patients, but we found that miR-155 was significantly up-regulated in patients with Graves’ disease with or without THD in comparison with healthy controls. Thus, miR-155 can serve as a novel biomarker for Graves’ disease and can play important roles in pathogenesis of Graves’ disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Barreto-Chaves ML, Senger N, Fevereiro M, Parletta AC, Takano A. Impact of hyperthyroidism on cardiac hypertrophy. Endocr. Connect. 2020;9(3):R59-R69. doi: https://doi.org/10.1530/EC-19-0543

    Article  CAS  PubMed Central  Google Scholar 

  2. Carneiro-Ramos MS, Diniz GP, Nadu AP, Almeida J, Vieira RL, Santos RA, Barreto-Chaves ML. Blockage of angiotensin II type 2 receptor prevents thyroxine-mediated cardiac hypertrophy by blocking Akt activation. Basic Res. Cardiol. 2010;105(3):325-335. doi: https://doi.org/10.1007/s00395-010-0089-0

    Article  CAS  PubMed  Google Scholar 

  3. Chen LY, Wang X, Qu XL, Pan LN, Wang ZY, Lu YH, Hu HY. Activation of the STAT3/microRNA-21 pathway participates in angiotensin II-induced angiogenesis. J. Cell. Physiol. 2019;234(11):19640-19654. doi: https://doi.org/10.1002/jcp.28564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Diniz GP, Lino CA, Moreno CR, Senger N, Barreto-Chaves MLM. MicroRNA-1 overexpression blunts cardiomyocyte hypertrophy elicited by thyroid hormone. J. Cell Physiol. 2017;232(12):3360-3368. doi: https://doi.org/10.1002/jcp.25781

    Article  CAS  PubMed  Google Scholar 

  5. Diniz GP, Takano AP, Barreto-Chaves ML. MiRNA-208a and miRNA-208b are triggered in thyroid hormone-induced cardiac hypertrophy - role of type 1 Angiotensin II receptor (AT1R) on miRNA-208a/α-MHC modulation. Mol. Cell. Endocrinol. 2013;374(1-2):117-124. doi: https://doi.org/10.1016/j.mce.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  6. Li K, Du Y, Jiang BL, He JF. Increased microRNA-155 and decreased microRNA-146a may promote ocular inflammation and proliferation in Graves’ ophthalmopathy. Med. Sci. Monit. 2014;20:639-643. doi: https://doi.org/10.12659/MSM.890686

    Article  PubMed  PubMed Central  Google Scholar 

  7. Martínez-Hernández R, Sampedro-Núñez M, Serrano-Somavilla A, Ramos-Leví AM, de la Fuente H, Triviño JC, Sanz-García A, Sánchez-Madrid F, Marazuela M. A MicroRNA Signature for Evaluation of Risk and Severity of Autoimmune Thyroid Diseases. J. Clin. Endocrinol. Metab. 2018;103(3):1139-1150. doi: https://doi.org/10.1210/jc.2017-02318

    Article  PubMed  Google Scholar 

  8. Navickas R, Gal D, Laucevičius A, Taparauskaitė A, Zdanytė M, Holvoet P. Identifying circulating microRNAs as biomarkers of cardiovascular disease: a systematic review. Cardiovasc. Res. 2016;111(4):322-337. doi: https://doi.org/10.1093/cvr/cvw174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Otsu H, Watanabe M, Inoue N, Masutani R, Iwatani Y. Intraindividual variation of microRNA expression levels in plasma and peripheral blood mononuclear cells and the associations of these levels with the pathogenesis of autoimmune thyroid diseases. Clin. Chem. Lab. Med. 2017;55(5):626-635. doi: https://doi.org/10.1515/cclm-2016-0449

    Article  CAS  PubMed  Google Scholar 

  10. Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, Leistner DM, Jakob P, Nakagawa S, Blankenberg S, Engelhardt S, Thum T, Weber C, Meder B, Hajjar R, Landmesser U. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur. Heart J. 2018;39(29):2704- 2716. doi: https://doi.org/10.1093/eurheartj/ehx165

    Article  CAS  PubMed  Google Scholar 

  11. Takano APC, Senger N, Munhoz CD, Barreto-Chaves MLM. AT1 receptor blockage impairs NF-κB activation mediated by thyroid hormone in cardiomyocytes. Pflugers Arch. 2018;470(3):549-558. doi: https://doi.org/10.1007/s00424-017-2088-6

    Article  CAS  PubMed  Google Scholar 

  12. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JT, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980-984. doi: https://doi.org/10.1038/nature07511

    Article  CAS  PubMed  Google Scholar 

  13. Vargas F, Rodríguez-Gómez I, Vargas-Tendero P, Jimenez E, Montiel M. The renin-angiotensin system in thyroid disorders and its role in cardiovascular and renal manifestations. J. Endocrinol. 2012;213(1):25-36. doi: https://doi.org/10.1530/JOE-11-0349

    Article  CAS  PubMed  Google Scholar 

  14. Zhang L, Masetti G, Colucci G, Salvi M, Covelli D, Eckstein A, Kaiser U, Draman MS, Muller I, Ludgate M, Lucini L, Biscarini F. Combining micro-RNA and protein sequencing to detect robust biomarkers for Graves’ disease and orbitopathy. Sci. Rep. 2018;8(1):8386. doi: https://doi.org/10.1038/s41598-018-26700-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zheng L, Xu CC, Chen WD, Shen WL, Ruan CC, Zhu LM, Zhu DL, Gao PJ. MicroRNA-155 regulates angiotensin II type 1 receptor expression and phenotypic differentiation in vascular adventitial fibroblasts. Biochem. Biophys. Res. Commun. 2010;400(4):483-488. doi: https://doi.org/10.1016/j.bbrc.2010.08.067

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. X. Chen.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 172, No. 8, pp. 148-156, August, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H.M., Chen, Y.X., Fan, X.M. et al. Expression of Circulating Rennin—Angiotensin—Aldosterone-Related microRNAs in Patients with Thyrotoxic Heart Disease. Bull Exp Biol Med 172, 125–132 (2021). https://doi.org/10.1007/s10517-021-05348-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-021-05348-4

Key Words

Navigation