Log in

Comparative analysis of machine learning models for solar flare prediction

  • Research
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In this paper, we develop five machine learning models, neural network (NN), long short-term memory (LSTM), LSTM based on attention mechanism (LSTM-A), bidirectional LSTM (BLSTM), and BLSTM based on attention mechanism (BLSTM-A), for predicting whether a ≥C class or ≥M class flare will occur in an active region in the next 24 hr. We use the data base provided by the Space-weather Helioseismic and Magnetic Imager Active Region Patches of Solar Dynamic Observatory, including 10 magnetic field features of active regions from 2010 May 1 to 2018 September 13. The samples are labeled flare information (i.e. No-flare/C/M/X) using solar flare events catalogue provided by the Geostationary Operational Environmental Satellite and Solar Geophysical Data solar event reports. In addition, we generated 10 cross-validation sets from these data using the cross-validation method. Then, after training, validating, and testing our models, we compare the results with the true skill statistics (TSS) as the assessment metric. The main results are as follows. (1) The TSS scores for ≥C class are 0.5472 ± 0.0809, 0.6425 ± 0.0685, 0.6904 ± 0.0575, 0.6681 ± 0.0573, and 0.6833 ± 0.0531 for NN, LSTM, LSTM-A, BLSTM and BLSTM-A, respectively. The TSS scores for ≥M class are 0.5723 ± 0.1139, 0.6579 ± 0.0758, 0.5943 ± 0.0712, 0.6493 ± 0.0826, and 0.5932 ± 0.0723, respectively. (2) For the first time, we add an attention mechanism to BLSTM for flare prediction, which improves the performance of the model for ≥C class. (3) Among the five models, the prediction model based on deep learning algorithms is generally superior to the model based on the traditional machine learning algorithm. The performance of the LSTM models is comparable to that of the BLSTM models. In general, LSTM-A for ≥C class performs better than other models. In addition, we also discuss the influence of 10 features on LSTM-A, and we find that removing the least significant feature will result in better performance than using all 10 features together, and the TSS score of the model will improve to 0.7059 ± 0.0440.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmed, O.W., Qahwaji, R., Colak, T., Higgins, P.A., Gallagher, P.T., Bloomfield, D.S.: Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Sol. Phys. 283(1), 157–175 (2013)

    Article  ADS  Google Scholar 

  • Bloomfield, D.S., Higgins, P.A., McAteer, R.J., Gallagher, P.T.: Toward reliable benchmarking of solar flare forecasting methods. Astrophys. J. Lett. 747(2), L41 (2012)

    Article  ADS  Google Scholar 

  • Bobra, M.G., Couvidat, S.: Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J. 798(2), 135 (2015)

    Article  ADS  Google Scholar 

  • Bobra, M.G., Ilonidis, S.: Predicting coronal mass ejections using machine learning methods. Astrophys. J. 821(2), 127 (2016)

    Article  ADS  Google Scholar 

  • Bobra, M.G., Sun, X., Hoeksema, J.T., Turmon, M., Liu, Y., Hayashi, K., et al.: The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs–space-weather HMI active region patches. Sol. Phys. 289(9), 3549–3578 (2014)

    Article  ADS  Google Scholar 

  • Cinto, T., Gradvohl, A.L.S., Coelho, G.P., da Silva, A.E.A.: A framework for designing and evaluating solar flare forecasting systems. Mon. Not. R. Astron. Soc. 495(3), 3332–3349 (2020)

    Article  ADS  Google Scholar 

  • Fleishman, G.D., Gary, D.E., Chen, B., Kuroda, N., Yu, S., Nita, G.M.: Decay of the coronal magnetic field can release sufficient energy to power a solar flare. Science 367(6475), 278–280 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Florios, K., Kontogiannis, I., Park, S.-H., Guerra, J.A., Benvenuto, F., Bloomfield, D.S., Georgoulis, M.K.: Forecasting solar flares using magnetogram-based predictors and machine learning. Sol. Phys. 293(2), 1–42 (2018)

    Article  Google Scholar 

  • Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)

    Article  Google Scholar 

  • Huang, X., Zhang, L., Wang, H., Li, L.: Improving the performance of solar flare prediction using active longitudes information. Astron. Astrophys. 549, A127 (2013)

    Article  ADS  Google Scholar 

  • Huang, X., Wang, H., Xu, L., Liu, J., Li, R., Dai, X.: Deep learning based solar flare forecasting model. I. Results for line-of-sight magnetograms. Astrophys. J. 856(1), 7 (2018)

    Article  ADS  Google Scholar 

  • Jaseena, K., Kovoor, B.C.: Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks. Energy Convers. Manag. 234, 113944 (2021)

    Article  Google Scholar 

  • Kim, T., Park, E., Lee, H., Moon, Y.-J., Bae, S.-H., Lim, D., et al.: Solar farside magnetograms from deep learning analysis of STEREO/EUVI data. Nat. Astron. 3(5), 397–400 (2019)

    Article  ADS  Google Scholar 

  • Leka, K., Barnes, G.: Photospheric magnetic field properties of flaring versus flare-quiet active regions. II. Discriminant analysis. Astrophys. J. 595(2), 1296 (2003)

    Article  ADS  Google Scholar 

  • Li, R., Zhu, J.: Solar flare forecasting based on sequential sunspot data. Res. Astron. Astrophys. 13(9), 1118 (2013)

    Article  ADS  Google Scholar 

  • Li, X., Zheng, Y., Wang, X., Wang, L.: Predicting solar flares using a novel deep convolutional neural network. Astrophys. J. 891(1), 10 (2020)

    Article  ADS  Google Scholar 

  • Liu, G., Guo, J.: Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing 337, 325–338 (2019)

    Article  Google Scholar 

  • Liu, C., Deng, N., Wang, J.T., Wang, H.: Predicting solar flares using SDO/HMI vector magnetic data products and the random forest algorithm. Astrophys. J. 843(2), 104 (2017)

    Article  ADS  Google Scholar 

  • Liu, H., Liu, C., Wang, J.T., Wang, H.: Predicting solar flares using a long short-term memory network. Astrophys. J. 877(2), 121 (2019)

    Article  ADS  Google Scholar 

  • Luong, M.-T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. ar**v preprint (2015). ar**v:1508.04025

  • Mason, J.P., Hoeksema, J.: Testing automated solar flare forecasting with 13 years of Michelson Doppler Imager magnetograms. Astrophys. J. 723(1), 634 (2010)

    Article  ADS  Google Scholar 

  • Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., Ishii, M.: Deep Flare Net (DeFN) model for solar flare prediction. Astrophys. J. 858(2), 113 (2018)

    Article  ADS  Google Scholar 

  • Park, E., Moon, Y.-J., Shin, S., Yi, K., Lim, D., Lee, H., Shin, G.: Application of the deep convolutional neural network to the forecast of solar flare occurrence using full-disk solar magnetograms. Astrophys. J. 869(2), 91 (2018)

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.: The Solar Dynamics Observatory (SDO). Sol. Phys. 275, 3–15 (2012)

    Article  ADS  Google Scholar 

  • Sadykov, V.M., Kosovichev, A.G.: Relationships between characteristics of the line-of-sight magnetic field and solar flare forecasts. Astrophys. J. 849(2), 148 (2017)

    Article  ADS  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., et al.: Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Sol. Phys. 275(1), 229–259 (2012)

    Article  ADS  Google Scholar 

  • Sinha, S., Gupta, O., Singh, V., Lekshmi, B., Nandy, D., Mitra, D., et al.: A comparative analysis of machine-learning models for solar flare forecasting: identifying high-performing active region flare indicators. Astrophys. J. 935(1), 45 (2022)

    Article  ADS  Google Scholar 

  • Song, H., Tan, C., **g, J., Wang, H., Yurchyshyn, V., Abramenko, V.: Statistical assessment of photospheric magnetic features in imminent solar flare predictions. Sol. Phys. 254(1), 101–125 (2009)

    Article  ADS  Google Scholar 

  • Sun, W., Xu, L., Huang, X., Zhang, W., Yuan, T., Yan, Y.: Bidirectional LSTM for ionospheric vertical Total Electron Content (TEC) forecasting. In: 2017 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4 (2017)

    Google Scholar 

  • Sun, Z., Bobra, M.G., Wang, X., Wang, Y., Sun, H., Gombosi, T., et al.: Predicting solar flares using cnn and LSTM on two solar cycles of active region data. Astrophys. J. 931(2), 163 (2022)

    Article  ADS  Google Scholar 

  • Veronig, A.M.: Can we predict solar flares? Science 369(6503), 504–505 (2020)

    Article  ADS  Google Scholar 

  • Wheatland, M., Ashamari, O., Barnes, G., Colak, T., et al.: A comparison of flare forecasting methods. I. Results from the “all-clear” workshop (2016)

  • Yuan, Y., Shih, F.Y., **g, J., Wang, H.-M.: Automated flare forecasting using a statistical learning technique. Res. Astron. Astrophys. 10(8), 785 (2010)

    Article  ADS  Google Scholar 

  • Zheng, Y., Li, X., Wang, X.: Solar flare prediction with the hybrid deep convolutional neural network. Astrophys. J. 885(1), 73 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Zheng Yanfang and Qin Weishu wrote the main manuscript text. Li Xuebao, Ling Yi, Huang Xusheng, and Li Xuefeng prepared tables and figures. Yan Pengchao, Yan Shuainan, and Lou Hengrui participated in the manuscript writing and revision. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xuebao Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Qin, W., Li, X. et al. Comparative analysis of machine learning models for solar flare prediction. Astrophys Space Sci 368, 53 (2023). https://doi.org/10.1007/s10509-023-04209-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-023-04209-y

Keywords

Navigation