Log in

Localization of 3D inertial Alfvén wave and generation of turbulence

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The present paper deals with the nonlinear interaction of Inertial Alfvén wave (IAW) and fast magnetosonic wave in the low beta plasma, where beta is the ratio of thermal pressure to the background magnetic pressure. In this paper, the localization and turbulent spectra of IAW along with the density dips correlated with the fast magnetosonic wave have been investigated. Variation of parallel electric field along and across the field lines has also been studied. Taking ponderomotive nonlinear effect in the dynamics of fast magnetosonic wave, couple of dimensionless equations has been derived. These coupled equations have been simulated numerically using the pseudo-spectral method. The obtained results reveal that the Kolmogorov scaling is followed by a steeper scaling in magnetic power spectrum, which is consistent with the observations by the FAST and Hawkeye spacecraft in auroral region. The relevance of present investigation has been discussed for auroral plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexandrova, O.: Solar wind vs. magnetosheath turbulence and Alfvén vortices. Nonlinear Process. Geophys. 15, 95108 (2008)

    Google Scholar 

  • Alfvén, H.: Nature (London) 150, 405 (1942)

    Article  ADS  Google Scholar 

  • Bellan, P.M., Stasiewicz, K.: Fine-scale cavitations of ionospheric plasma caused by inertial Alfvén wave ponderomotive force. Phys. Rev. Lett. 80(16), 3523 (1998)

    Article  ADS  Google Scholar 

  • Bian, N.H., Browning, P.K.: Particle acceleration in a model of a turbulent reconnecting plasma: a fractional diffusion approach. Astrophys. J. 687, L111–L114 (2008)

    Article  ADS  Google Scholar 

  • Boehm, M.H., Carlson, C.W., McFadden, J.P., Clemmons, J.H., Mozer, F.S.: High resolution sounding rocket observations of large amplitude Alfven waves. J. Geophys. Res. 95, 12157–12171 (1990)

    Article  ADS  Google Scholar 

  • Brodin, G., Stenflo, L.: Coupling coefficients for ion-cyclotron Alfven waves. Contrib. Plasma Phys. 30, 413–419 (1990)

    Article  ADS  Google Scholar 

  • Chaston, C.C., Carlson, C.W., Peria, W.J., Ergun, R.E., McFadden, J.P.: FAST observations of inertial Alfvén waves. Geophys. Res. Lett. 26(6), 647 (1999)

    Article  ADS  Google Scholar 

  • Chaston, C.C., Carlson, C.W., Ergun, R.E., McFadden, J.P.: Alfven waves, density cavities and electron acceleration observed from the FAST spacecraft. Phys. Scr. T 84, 64 (2000)

    Article  ADS  Google Scholar 

  • Chaston, C.C., Bonnell, J.W., Peticolas, L.M., Carlson, C.W., McFadden, J.P.: Driven Alfvén waves and electron acceleration: a FAST case study. Geophys. Res. Lett. 29(11), 1535 (2002)

    Article  ADS  Google Scholar 

  • Chaston, C.C., Genot, V., Bonnell, J.W., Carlson, C.W., McFadden, J.P., Ergun, R.E., Strangeway, R.J., Lund, E.J., Hwang, K.J.: Ionospheric erosion by Alfvén waves. J. Geophys. Res. 111, A03206 (2006)

    ADS  Google Scholar 

  • Chaston, C.C., Salem, C., Bonnell, J.W., Carlson, C.W., Ergun, R.E., Strangeway, R.J., McFadden, J.P.: The turbulent Alfvénic Aurora. Phys. Rev. Lett. 100, 175003 (2008)

    Article  ADS  Google Scholar 

  • Chmyrev, V.M., Bilichenko, S.V., Pokhotelov, O.A., Marchenko, V.A., Lazarev, V.I., Streltsov, A.V., Stenflo, L.: Alfvén vortices and related phenomena in the ionosphere and the magnetosphere. Phys. Scr. 38, 841–854 (1988)

    Article  ADS  Google Scholar 

  • Chmyrev, V.M., Marchenko, V.A., Pokhotelov, O.A., Stenflo, L., Streltsov, A.V., Steen, A.: Vortex structures in the ionosphere and the magnetosphere of the earth. Planet. Space Sci. 39, 1025 (1991)

    Article  ADS  Google Scholar 

  • Chust, T., Louarn, P., Volwerk, M., Feraudy, H.D., Roux, A., Wahlund, J.E., Holback, B.: Electric fields with a large parallel component observed by the Freja spacecraft: artifacts or real signals? J. Geophys. Res. 103, A1215 (1998)

    Google Scholar 

  • Cramer, N.F.: The Physics of Alfvén Waves. Wiley–VCH, Berlin (2001)

    Book  Google Scholar 

  • Dastgeer, S., Shukla, P.K.: 3D simulations of fluctuation spectra in the hall-MHD plasma. Phys. Rev. Lett. 102, 045004 (2009)

    Article  Google Scholar 

  • Goertz, C.K., Boswell, R.W.: Magnetosphere-ionosphere coupling. J. Geophys. Res. 84(A12), 7239–7246 (1979)

    Article  ADS  Google Scholar 

  • Gurnett, D.A., Huff, R.L., Menietti, J.D., Burch, J.L., Winningham, J.D., Shawhan, S.D.: Correlated low-frequency electric and magnetic noise along the auroral field lines. J. Geophys. Res. 89, 8971 (1984)

    Article  ADS  Google Scholar 

  • Hultqvist, B.: Acceleration of ionospheric outflowing ions. Phys. Chem. Earth, Part C 24, 247 (1999)

    Article  ADS  Google Scholar 

  • Kintner, P.M.: Observations of velocity shear driven plasma turbulence. J. Geophys. Res. 81, 5114 (1976)

    Article  ADS  Google Scholar 

  • Laveder, D., Passot, T., Sulem, P.L.: Transverse dynamics of dispersive Alfvén waves. I. Direct numerical evidence of filamentation. Phys. Plasmas 9, 293 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  • Lund, E.J.: On the dissipation scale of broadband ELF waves in the auroral region. J. Geophys. Res. 115, A01201 (2010)

    ADS  Google Scholar 

  • Lundin, R., Guglielmi, A.: Ponderomotive forces in cosmos. Space Sci. Rev. 127, 1–116 (2006)

    Article  ADS  Google Scholar 

  • Marklund, G.T., Ivchenko, N., Karlsson, T., Fazakerley, A., Dunlop, M., Lindqvist, P.A., Buchert, S., Owen, C., Taylor, M., Vaivalds, A., Carter, P., André, M., Balogh, A.: Temporal evolution of the electric field accelerating electrons away from the auroral ionosphere. Nature 414, 724 (2001)

    Article  ADS  Google Scholar 

  • Marklund, G.T., Sadeghi, S., Cumnock, J.A., Karlsson, T., Lindqvist, P.A., Nilsson, H., Masson, A., Fazakerley, A., Lucek, E., Pickett, J., Zhang, Y.: Evolution in space and time of the quasi-static acceleration potential of inverted-V aurora and its interaction with Alfvénic boundary processes. J. Geophys. Res. 116, A00K13 (2011)

    ADS  Google Scholar 

  • Miller, M.A.: Motion of charged particles in high-frequency electromagnetic field. Radiophysics (Russ.) 1, 110 (1958)

    Google Scholar 

  • Mozer, F.S., Carlson, C.W., Hudson, M.K., Torbert, R.B., Parady, B., Yatteau, J., Kelley, M.C.: Observations of paired electrostatic shocks in the polar magnetosphere. Phys. Rev. Lett. 38, 292–295 (1977)

    Article  ADS  Google Scholar 

  • Onishchenko, O.G., Pokhotelov, O.A., Sagdeev, R.Z., Pavlenko, V.P., Stenflo, L., Shukla, P.K., Zolotukhin, V.V.: Effects of ion temperature gradients on the formation of drift Alfvén vortex structures in dusty plasmas. Phys. Plasmas 9, 1539 (2002)

    Article  ADS  Google Scholar 

  • Onishchenko, O.G., Pokhotelov, O.A., Balikhin, M.A., Stenflo, L., Sagdeev, R.Z.: Suppression of convective cell generation by Alfvén waves in the ionospheric auroral cavity. Phys. Plasmas 11, 4954 (2004). doi:10.1063/1.1802433

    Article  ADS  Google Scholar 

  • Petviashvili, V., Pokhotelov, O.: Solitary Waves in Plasmas and in the Atmosphere. Gordon and Breach, Philadelphia (1992). 262 pp., ISBN 2-88124-787-3

    MATH  Google Scholar 

  • Rinawa, M.L., Modi, K.V., Sharma, R.P.: Nonlinear evolution of 3D-inertial Alfvén wave and turbulent spectra in Auroral region. Astrophys. Space Sci. 353, 405 (2014)

    Article  ADS  Google Scholar 

  • Sahraoui, F., Belmont, G., Pinc, J.L., Rezeau, L., Balogh, A., Robert, P., Cornillea Wehrlin, N.: Magnetic turbulent spectra in the magnetosheath: new insights. Ann. Geophys. 22, 2283 (2004)

    Article  ADS  Google Scholar 

  • Sharma, R.P., Singh, H.D.: Density cavities associated with inertial Alfvén waves in the auroral plasma. J. Geophys. Res. 114, A03109 (2009). doi:10.1029/2008JA013474

    ADS  Google Scholar 

  • Sharma, R.P., Kumar, S., Singh, H.D.: Nonlinear interaction of dispersive Alfven waves and magnetosonic waves in space plasma. Phys. Plasmas 16, 032901 (2009)

    Article  ADS  Google Scholar 

  • Sharma, R.P., Yadav, N., Pathak, N.: Role of 3d-dispersive Alfven waves in coronal heating. Astrophys. Space Sci. 351, 75 (2014a)

    Article  ADS  Google Scholar 

  • Sharma, P., Yadav, N., Sharma, R.P.: Nonlinear interaction of 3-D kinetic Alfvén wave and fast magnetosonic wave. J. Geophys. Res. 119, 6569–6576 (2014b)

    Article  Google Scholar 

  • Shukla, P.K., Stenflo, L.: Decay of a magnetic-field-aligned Alfvén wave into inertial and kinetic Alfvén waves in plasmas. Phys. Plasmas 12, 084502 (2005)

    Article  ADS  Google Scholar 

  • Shukla, P.K., Bingham, R., McKenzie, J.F., Axford, W.I.: Solar coronal heating by high-frequency dispersive Alfvén waves. Sol. Phys. 186, 61–66 (1998)

    Article  ADS  Google Scholar 

  • Shukla, P.K., Stenflo, L., Bingham, R.: Nonlinear propagation of inertial Alfvén waves in auroral plasmas. Phys. Plasmas 6, 1677 (1999)

    Article  ADS  Google Scholar 

  • Singh, N., Rao, S.: Plasma turbulence driven by transversely large scale standing shear Alfvén waves. Phys. Plasmas 19, 122303 (2012)

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Bellan, P., Chaston, C., Kletzing, C., Lysak, R., Maggs, J., Pokhotelov, O., Seyler, C., Shukla, P., Stenflo, L., Streltsov, A., Wahlund, J.E.: Small scale Alfvenic structure in the aurora. Space Sci. Rev. 92, 423–533 (1999)

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Khotyaintsev, Y., Berthomier, M., Wahlund, J.E.: Identification of widespread turbulence of dispersive Alfvén waves. Geophys. Res. Lett. 27(2), 173 (2000)

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Shukla, P.K., Gustafsson, G., Buchert, S., Lavraud, B., Thide, B., Klos, Z.: Slow magnetosonic solitons detected by the cluster spacecraft. Phys. Rev. Lett. 90, 085002 (2003)

    Article  ADS  Google Scholar 

  • Temerin, M.: The polarization, frequency, and wavelengths of high latitude turbulence. Geophys. Res. 83, 2609 (1978)

    Article  ADS  Google Scholar 

  • Washimi, H., Karpman, V.I.: The ponderomotive force of a high-frequency electromagnetic field in a dispersive medium. J. Exp. Theor. Phys. 71, 1010 (1976) [Russian]

    Google Scholar 

  • Wu, D.J., Huang, G.L., Wang, D.Y., Carl, G.F.: Solitary kinetic Alfvén waves the two fluid model. Phys. Plasmas 3, 2879 (1996)

    Article  ADS  Google Scholar 

  • Wu, C.S., Wang, C.B., Lu, Q.M.: Density depletion in a coronal flux tube associated with solar radio emission. Sol. Phys. 235, 317 (2006)

    Article  ADS  Google Scholar 

  • Zimbardo, G., Perri, S.: From Levy walks to superdiffusive shock acceleration. Astrophys. J. 778, 35 (2013)

    Article  ADS  Google Scholar 

  • Zimbardo, G., Greco, A., Veltri, P., Voros, Z., Taktakishvili, A.L.: Magnetic turbulence in and around the Earth’s magnetosphere. Astrophys. Space Sci. Trans. 4, 35–40 (2008)

    Article  ADS  Google Scholar 

  • Zimbardo, G., Greco, A., Sorriso-Valvo, L., Perri, S., Vörös, Z., Aburjania, G., Chargazia, K., Alexandrova, V.: Magnetic turbulence in the geospace environment. Space Sci. Rev. 156, 89 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Council for Scientific and Industrial Research (CSIR), the Indian Space Research Organization (ISRO) under the RESPOND program, and the Department of Science and Technology (DST), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prachi Sharma.

Appendix: Expressions for ponderomotive force

Appendix: Expressions for ponderomotive force

The components of ponderomotive force for electrons due to 3D IAW are

$$ F_{ex} = \biggl( \frac{e^{2}\lambda_{e}^{2}k_{0 \bot}^{2}}{4m_{e}c^{2}} \biggr)\frac{\partial \vert A_{z} \vert ^{2}}{\partial x} $$
(15)
$$ F_{ey} = \biggl( \frac{c^{2}\alpha^{2}m_{e}k_{0x}k_{0y}}{4B_{0}^{2}} \biggr) \frac{\partial \vert A_{z} \vert ^{2}}{\partial x} $$
(16)

and

$$ F_{ez} = - \biggl( \frac{e^{2}\lambda_{e}^{4}k_{0 \bot}^{4}}{4m_{e}c^{2}} \biggr)\frac{\partial \vert A_{z} \vert ^{2}}{\partial z} $$
(17)

Similarly the components of ponderomotive force for ions due to 3D IAW are as follows:

$$\begin{aligned} F_{ix} =& \biggl( - \frac{m_{i}P^{2}c^{2}k_{0y}^{2}\alpha^{2}}{4B_{0}^{2}} - \frac{m_{i}Q^{2}c^{2}k_{0x}^{2}\alpha^{2}}{4B_{0}^{2}} \biggr) \frac{\partial \vert A_{z} \vert ^{2}}{\partial x} \\ &{} + \biggl( \frac{eQck_{0x}k_{0z}\alpha^{2}}{4\omega_{0}B_{0}} - \frac{eQ\alpha k_{0x}}{4B_{0}} \biggr) \frac{\partial \vert A_{z} \vert ^{2}}{\partial z} \end{aligned}$$
(18)
$$\begin{aligned} F_{iy} =& \biggl( \frac{m_{i}P^{2}c^{2}k_{0x}k_{0y}\alpha^{2}}{4B_{0}^{2}} - \frac{m_{i}Q^{2}c^{2}k_{0x}k_{0y}\alpha^{2}}{4B_{0}^{2}} \biggr) \frac{\partial \vert A_{z} \vert ^{2}}{\partial x} \\ &{} + \biggl( \frac{eQck_{0y}k_{0z}\alpha^{2}}{4\omega_{0}B_{0}} - \frac{eQ\alpha k_{0y}}{4B_{0}} \biggr)\frac{\partial \vert A_{z} \vert ^{2}}{\partial z} \end{aligned}$$
(19)

and

$$ F_{iz} = \biggl( \frac{eQck_{0x}k_{0z}\alpha^{2}}{4\omega_{0}B_{0}} \biggr) \frac{\partial \vert A_{z} \vert ^{2}}{\partial x} + \biggl( \frac{e^{2}\alpha k_{0z}}{2\omega_{0}cm_{i}} \biggr)\frac{\partial \vert A_{z} \vert ^{2}}{\partial z} $$
(20)

Here

$$\begin{aligned} &{P = \frac{\omega_{ci}^{2}}{\omega_{ci}^{2} - \omega_{0}^{2}},\qquad Q = \frac{\omega_{ci}\omega_{0}}{\omega_{ci}^{2} - \omega_{0}^{2}}\quad \mbox{and}}\\ &{\alpha = \frac{\omega_{0}}{ck_{0z}} \bigl( 1 + \lambda_{e}^{2}k_{0 \bot}^{2} \bigr)} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R.P., Sharma, P. & Yadav, N. Localization of 3D inertial Alfvén wave and generation of turbulence. Astrophys Space Sci 357, 110 (2015). https://doi.org/10.1007/s10509-015-2338-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-015-2338-z

Keywords

Navigation