Log in

BRAFi induced demethylation of miR-152-5p regulates phenotype switching by targeting TXNIP in cutaneous melanoma

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Treatment of advanced BRAFV600-mutant melanoma using BRAF inhibitors (BRAFi) eventually leads to drug resistance and selects for highly metastatic tumor cells. We compared the most differentially dysregulated miRNA expression profiles of vemurafenib-resistant and highly-metastatic melanoma cell lines obtained from GEO DataSets. We discovered miR-152-5p was a potential regulator mediating melanoma drug resistance and metastasis. Functionally, knockdown of miR-152-5p significantly compromised the metastatic ability of BRAFi-resistant melanoma cells and overexpression of miR-152-5p promoted the formation of slow-cycling phenotype. Furthermore, we explored the cause of how and why miR-152-5p affected metastasis in depth. Mechanistically, miR-152-5p targeted TXNIP which affected metastasis and BRAFi altered the methylation status of MIR152 promoter. Our study highlights the crucial role of miR-152-5p on melanoma metastasis after BRAFi treatment and holds significant implying that discontinuous dosing strategy may improve the benefit of advanced BRAFV600-mutant melanoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Verfaillie A, Imrichova H, Atak ZK, Dewaele M, Rambow F, Hulselmans G et al (2015) Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nat Commun 6:6683

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hayward NK, Wilmott JS, Waddell N, Johansson PA, Field MA, Nones K et al (2017) Whole-genome landscapes of major melanoma subtypes. Nature 545(7653):175–180

    CAS  PubMed  Google Scholar 

  3. Cancer Genome Atlas N (2015) Genomic classification of cutaneous melanoma. Cell 161(7):1681–1696

    Google Scholar 

  4. Widmer DS, Cheng PF, Eichhoff OM, Belloni BC, Zipser MC, Schlegel NC et al (2012) Systematic classification of melanoma cells by phenotype-specific gene expression map**. Pigment Cell Melanoma Res 25(3):343–353

    CAS  PubMed  Google Scholar 

  5. Richards HW, Medrano EE (2009) Epigenetic marks in melanoma. Pigment Cell Melanoma Res 22(1):14–29

    CAS  PubMed  Google Scholar 

  6. Wouters J, Vizoso M, Martinez-Cardus A, Carmona FJ, Govaere O, Laguna T et al (2017) Comprehensive DNA methylation study identifies novel progression-related and prognostic markers for cutaneous melanoma. BMC Med 15(1):101

    PubMed  PubMed Central  Google Scholar 

  7. Shi H, Hugo W, Kong X, Hong A, Koya RC, Moriceau G et al (2013) Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov 4(1):80–93

    PubMed  PubMed Central  Google Scholar 

  8. Maxwell R, Garzon-Muvdi T, Lipson EJ, Sharfman WH, Bettegowda C, Redmond KJ et al (2017) BRAF-V600 mutational status affects recurrence patterns of melanoma brain metastasis. Int J Cancer 140(12):2716–2727

    CAS  PubMed  Google Scholar 

  9. Paulitschke V, Berger W, Paulitschke P, Hofstatter E, Knapp B, Dingelmaier-Hovorka R et al (2015) Vemurafenib resistance signature by proteome analysis offers new strategies and rational therapeutic concepts. Mol Cancer Ther 14(3):757–768

    CAS  PubMed  Google Scholar 

  10. Zubrilov I, Sagi-Assif O, Izraely S, Meshel T, Ben-Menahem S, Ginat R et al (2015) Vemurafenib resistance selects for highly malignant brain and lung-metastasizing melanoma cells. Cancer Lett 361(1):86–96

    CAS  PubMed  Google Scholar 

  11. O'Connell MP, Marchbank K, Webster MR, Valiga AA, Kaur A, Vultur A et al (2013) Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. Cancer Discov 3(12):1378–1393

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang J, Huang SK, Marzese DM, Hsu SC, Kawas NP, Chong KK et al (2015) Epigenetic changes of EGFR have an important role in BRAF inhibitor-resistant cutaneous melanomas. J Investig Dermatol 135(2):532–541

    PubMed  Google Scholar 

  13. Jansson MD, Lund AH (2012) MicroRNA and cancer. Mol Oncol 6(6):590–610

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Diaz-Martinez M, Benito-Jardon L, Alonso L, Koetz-Ploch L, Hernando E, Teixido J (2018) miR-204-5p and miR-211-5p contribute to BRAF inhibitor resistance in melanoma. Cancer Res 78(4):1017–1030

    PubMed  Google Scholar 

  15. Sahoo A, Sahoo SK, Joshi P, Lee B, Perera RJ (2019) MicroRNA-211 loss promotes metabolic vulnerability and BRAF inhibitor sensitivity in melanoma. J Investig Dermatol 139(1):167–176

    CAS  PubMed  Google Scholar 

  16. Fattore L, Ruggiero CF, Pisanu ME, Liguoro D, Cerri A, Costantini S et al (2019) Reprogramming miRNAs global expression orchestrates development of drug resistance in BRAF mutated melanoma. Cell Death Differ 26(7):1267–1282

    CAS  PubMed  Google Scholar 

  17. Pencheva N, Tavazoie SF (2013) Control of metastatic progression by microRNA regulatory networks. Nat Cell Biol 15(6):546–554

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rambow F, Bechadergue A, Luciani F, Gros G, Domingues M, Bonaventure J et al (2016) Regulation of melanoma progression through the TCF4/miR-125b/NEDD9 cascade. J Investig Dermatol 136(6):1229–1237

    CAS  PubMed  Google Scholar 

  19. Boyle GM, Woods SL, Bonazzi VF, Stark MS, Hacker E, Aoude LG et al (2011) Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res 24(3):525–537

    CAS  PubMed  Google Scholar 

  20. Kappelmann M, Kuphal S, Meister G, Vardimon L, Bosserhoff AK (2013) MicroRNA miR-125b controls melanoma progression by direct regulation of c-Jun protein expression. Oncogene 32(24):2984–2991

    CAS  PubMed  Google Scholar 

  21. Bell RE, Khaled M, Netanely D, Schubert S, Golan T, Buxbaum A et al (2014) Transcription factor/microRNA axis blocks melanoma invasion program by miR-211 targeting NUAK1. J Invest Dermatol 134(2):441–451

    CAS  PubMed  Google Scholar 

  22. Guo W, Wang H, Yang Y, Guo S, Zhang W, Liu Y et al (2017) Down-regulated miR-23a contributes to the metastasis of cutaneous melanoma by promoting autophagy. Theranostics 7(8):2231–2249

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Luan W, Qian Y, Ni X, Bu X, **a Y, Wang J et al (2017) miR-204-5p acts as a tumor suppressor by targeting matrix metalloproteinases-9 and B-cell lymphoma-2 in malignant melanoma. OncoTargets Ther 10:1237–1246

    CAS  Google Scholar 

  24. Shoshan E, Mobley AK, Braeuer RR, Kamiya T, Huang L, Vasquez ME et al (2015) Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nat Cell Biol 17(3):311–321

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Babapoor S, Wu R, Kozubek J, Auidi D, Grant-Kels JM, Dadras SS (2017) Identification of microRNAs associated with invasive and aggressive phenotype in cutaneous melanoma by next-generation sequencing. Lab Investig 97(6):636–648

    CAS  PubMed  Google Scholar 

  26. Chen Y, Song YX, Wang ZN (2013) The microRNA-148/152 family: multi-faceted players. Mol Cancer 12(1):43

    PubMed  PubMed Central  Google Scholar 

  27. Ma J, Yao YL, Wang P, Liu YH, Zhao LN, Li ZQ et al (2014) MiR-152 functions as a tumor suppressor in glioblastoma stem cells by targeting Kruppel-like factor 4. Cancer Lett 355(1):85–95

    CAS  PubMed  Google Scholar 

  28. Zheng X, Chopp M, Lu Y, Buller B, Jiang F (2013) MiR-15b and miR-152 reduce glioma cell invasion and angiogenesis via NRP-2 and MMP-3. Cancer Lett 329(2):146–154

    CAS  PubMed  Google Scholar 

  29. Daniunaite K, Dubikaityte M, Gibas P, Bakavicius A, Rimantas Lazutka J, Ulys A et al (2017) Clinical significance of miRNA host gene promoter methylation in prostate cancer. Hum Mol Genet 26(13):2451–2461

    CAS  PubMed  Google Scholar 

  30. Stumpel DJ, Schotte D, Lange-Turenhout EA, Schneider P, Seslija L, de Menezes RX et al (2011) Hypermethylation of specific microRNA genes in MLL-rearranged infant acute lymphoblastic leukemia: major matters at a micro scale. Leukemia 25(3):429–439

    CAS  PubMed  Google Scholar 

  31. Tsuruta T, Kozaki K, Uesugi A, Furuta M, Hirasawa A, Imoto I et al (2011) miR-152 is a tumor suppressor microRNA that is silenced by DNA hypermethylation in endometrial cancer. Cancer Res 71(20):6450–6462

    CAS  PubMed  Google Scholar 

  32. Braconi C, Huang N, Patel T (2010) MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 51(3):881–890

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang J, Wang Y, Guo Y, Sun S (2010) Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology 52(1):60–70

    CAS  PubMed  Google Scholar 

  34. Parmenter TJ, Kleinschmidt M, Kinross KM, Bond ST, Li J, Kaadige MR et al (2014) Response of BRAF-mutant melanoma to BRAF inhibition is mediated by a network of transcriptional regulators of glycolysis. Cancer Discov 4(4):423–433

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Raffel S, Falcone M, Kneisel N, Hansson J, Wang W, Lutz C et al (2017) BCAT1 restricts alphaKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature 551(7680):384–388

    CAS  PubMed  Google Scholar 

  36. Hoek KS, Goding CR (2010) Cancer stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res 23(6):746–759

    CAS  PubMed  Google Scholar 

  37. Brabletz T (2012) To differentiate or not — routes towards metastasis. Nat Rev Cancer 12(6):425–436

    CAS  PubMed  Google Scholar 

  38. Hoek KS, Eichhoff OM, Schlegel NC, Dobbeling U, Kobert N, Schaerer L et al (2008) In vivo switching of human melanoma cells between proliferative and invasive states. Can Res 68(3):650–656

    CAS  Google Scholar 

  39. Caramel J, Papadogeorgakis E, Hill L, Browne GJ, Richard G, Wierinckx A et al (2013) A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell 24(4):466–480

    CAS  PubMed  Google Scholar 

  40. Shakhova O, Zingg D, Schaefer SM, Hari L, Civenni G, Blunschi J et al (2012) Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nat Cell Biol 14(8):882–890

    CAS  PubMed  Google Scholar 

  41. Zhang G, Herlyn M (2014) Linking SOX10 to a slow-growth resistance phenotype. Cell Res 24(8):906–907

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Han S, Ren Y, He W, Liu H, Zhi Z, Zhu X et al (2018) ERK-mediated phosphorylation regulates SOX10 sumoylation and targets expression in mutant BRAF melanoma. Nat Commun 9(1):28

    PubMed  PubMed Central  Google Scholar 

  43. Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann KM, Speicher D et al (2013) Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B high cells. Cancer Cell 23(6):811–825

    CAS  PubMed  Google Scholar 

  44. Held M, Bosenberg M (2010) A role for the JARID1B stem cell marker for continuous melanoma growth. Pigment Cell Melanoma Res 23(4):481–483

    PubMed  Google Scholar 

  45. Ahn A, Chatterjee A, Eccles MR (2017) The slow cycling phenotype: a growing problem for treatment resistance in melanoma. Mol Cancer Ther 16(6):1002–1009

    CAS  PubMed  Google Scholar 

  46. Perego M, Maurer M, Wang JX, Shaffer S, Müller AC, Parapatics K et al (2017) A slow-cycling subpopulation of melanoma cells with highly invasive properties. Oncogene 37(3):302–312

    PubMed  PubMed Central  Google Scholar 

  47. Haferkamp S, Borst A, Adam C, Becker TM, Motschenbacher S, Windhovel S et al (2013) Vemurafenib induces senescence features in melanoma cells. J Investig Dermatol 133(6):1601–1609

    CAS  PubMed  Google Scholar 

  48. Milanovic M, Fan DNY, Belenki D, Dabritz JHM, Zhao Z, Yu Y et al (2018) Senescence-associated reprogramming promotes cancer stemness. Nature 553(7686):96–100

    CAS  PubMed  Google Scholar 

  49. Dou Z, Berger SL (2018) Senescence elicits stemness: a surprising mechanism for cancer relapse. Cell Metab 27(4):710–711

    CAS  PubMed  Google Scholar 

  50. Leikam C, Hufnagel AL, Otto C, Murphy DJ, Muhling B, Kneitz S et al (2015) In vitro evidence for senescent multinucleated melanocytes as a source for tumor-initiating cells. Cell Death Dis 6:e1711

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Muoio DM (2007) TXNIP links redox circuitry to glucose control. Cell Metab 5(6):412–414

    CAS  PubMed  Google Scholar 

  52. Knoll S, Furst K, Kowtharapu B, Schmitz U, Marquardt S, Wolkenhauer O et al (2014) E2F1 induces miR-224/452 expression to drive EMT through TXNIP downregulation. EMBO Rep 15(12):1315–1329

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Goldberg SF, Miele ME, Hatta N, Takata M, Paquette-Straub C, Freedman LP et al (2003) Melanoma metastasis suppression by chromosome 6: evidence for a pathway regulated by CRSP3 and TXNIP. Cancer Res 63(2):432–440

    CAS  PubMed  Google Scholar 

  54. Cheng GC, Schulze PC, Lee RT, Sylvan J, Zetter BR, Huang H (2004) Oxidative stress and thioredoxin-interacting protein promote intravasation of melanoma cells. Exp Cell Res 300(2):297–307

    CAS  PubMed  Google Scholar 

  55. Sullivan WJ, Mullen PJ, Schmid EW, Flores A, Momcilovic M, Sharpley MS et al (2018) Extracellular matrix remodeling regulates glucose metabolism through TXNIP destabilization. Cell 175(1):117

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wilde BR, Ayer DE (2015) Interactions between Myc and MondoA transcription factors in metabolism and tumourigenesis. Br J Cancer 113(11):1529–1533

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KL and SJ conceived and designed the experiments; KL, MT, ST, CW and QS performed the experiments; KL, ML, XS and TW analyzed the data; KL and SJ wrote the manuscript.

Corresponding author

Correspondence to Shifeng **.

Ethics declarations

Conflict of interest

The authors confirm that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12332.7 kb)

Supplementary material 2 (DOCX 59.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Tang, M., Tong, S. et al. BRAFi induced demethylation of miR-152-5p regulates phenotype switching by targeting TXNIP in cutaneous melanoma. Apoptosis 25, 179–191 (2020). https://doi.org/10.1007/s10495-019-01586-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-019-01586-0

Keywords

Navigation