Log in

DNA polymerase-β is required for 1-methyl-4-phenylpyridinium-induced apoptotic death in neurons

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The biochemical pathways that mediate the degeneration of dopaminergic neurons in the substantia nigra of patients with Parkinson’s disease are largely unknown. Recently, aberrant cell cycle events have been shown to be associated with neuronal death in several neurodegenerative diseases. In the present study, we investigated the role of DNA polymerases (DNA pols) in 1-methyl-4-phenylpyridinium (MPP+)-induced neuronal apoptosis in cerebellar granule cells. After exposure to MPP+, the neurons entered S phase of the cell cycle. Neuronal cell cycle re-entry and apoptosis were attenuated by flavopiridol, which is a broad inhibitor of cyclin-dependent kinases (CDKs). MPP+ exposure significantly increased the expression of DNA pol-β and primase but did not affect the expression of the canonical replicative DNA pols, including DNA pol-δ and pol-ε. Dideoxycytidine, which is a pharmacological inhibitor of DNA pol-β, attenuated the neuronal apoptosis mediated by MPP+. In a similar manner, the expression of a dominant negative form of DNA pol-β was also neuroprotective. These results suggest that DNA pol-β may have a causal role in MPP+-induced neuronal apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7(1):97–109

    Article  CAS  PubMed  Google Scholar 

  2. Schulz JB (2008) Update on the pathogenesis of Parkinson’s disease. J Neurol 255(Suppl 5):3–7

    Article  CAS  PubMed  Google Scholar 

  3. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    Article  CAS  PubMed  Google Scholar 

  4. Serulle Y, Morfini G, Pigino G, Moreira JE, Sugimori M, Brady ST, Llinás RR (2007) 1-Methyl-4-phenylpyridinium induces synaptic dysfunction through a pathway involving caspase and PKC delta enzymatic activities. Proc Natl Acad Sci U S A 104(7):2437–2441

    Article  CAS  PubMed  Google Scholar 

  5. Shang T, Kotamraju S, Kalivendi SV, Hillard CJ, Kalyanaraman B (2004) 1-Methyl-4-phenylpyridinium-induced apoptosis in cerebellar granule neurons is mediated by transferrin receptor iron-dependent depletion of tetrahydrobiopterin and neuronal nitric-oxide synthase-derived superoxide. J Biol Chem 279(18):19099–19112

    Article  CAS  PubMed  Google Scholar 

  6. Jordan-Sciutto KL, Dorsey R, Chalovich EM, Hammond RR, Achim CL (2003) Expression patterns of retinoblastoma protein in Parkinson disease. J Neuropathol Exp Neurol 62(1):68–74

    CAS  PubMed  Google Scholar 

  7. Herrup K, Neve R, Ackerman SL, Copani A (2004) Divide and die: cell cycle events as triggers of nerve cell death. J Neurosci 24(42):9232–9239

    Article  CAS  PubMed  Google Scholar 

  8. Yang Y, Mufson EJ, Herrup K (2003) Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease. J Neurosci 23(7):2557–2563

    CAS  PubMed  Google Scholar 

  9. Ranganathan S, Bowser R (2003) Alterations in G(1) to S phase cell-cycle regulators during amyotrophic lateral sclerosis. Am J Pathol 162(3):823–835

    CAS  PubMed  Google Scholar 

  10. Höglinger GU, Breunig JJ, Depboylu C, Rouaux C, Michel PP, Alvarez-Fischer D et al (2007) The pRb/E2F cell-cycle pathway mediates cell death in Parkinson’s disease. Proc Natl Acad Sci U S A 104(9):3585–3590

    Article  PubMed  CAS  Google Scholar 

  11. Greene LA, Biswas SC, Liu DX (2004) Cell cycle molecules and vertebrate neuron death: E2F at the hub. Cell Death Differ 11(1):49–60

    Article  CAS  PubMed  Google Scholar 

  12. Di Giovanni S, Movsesyan V, Ahmed F, Cernak I, Schinelli S, Stoica B, Faden AI (2005) Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A 102(23):8333–8833

    Article  CAS  PubMed  Google Scholar 

  13. Rideout HJ, Wang Q, Park DS, Stefanis L (2003) Cyclin-dependent kinase activity is required for apoptotic death but not inclusion formation in cortical neurons after proteasomal inhibition. J Neurosci 23(4):1237–1245

    CAS  PubMed  Google Scholar 

  14. Zhu X, Raina AK, Perry G, Smith MA (2004) Alzheimer’s disease: the two-hit hypothesis. Lancet Neurol 3(4):219–226

    Article  CAS  PubMed  Google Scholar 

  15. Yang Y, Herrup K (2006) Cell division in the CNS: protective response or lethal event in post-mitotic neurons? Biochim Biophys Acta 1772(4):457–466

    PubMed  Google Scholar 

  16. Copani A, Sortino MA, Caricasole A, Chiechio S, Chisari M, Battaglia G, Giuffrida-Stella AM, Vancheri C, Nicoletti F (2002) Erratic expression of DNA polymerases by beta-amyloid causes neuronal death. FASEB J 16(14):2006–2008

    CAS  PubMed  Google Scholar 

  17. Copani A, Hoozemans JJ, Caraci F, Calafiore M, Van Haastert ES, Veerhuis R, Rozemuller AJ, Aronica E, Sortino MA, Nicoletti F (2006) DNA polymerase-beta is expressed early in neurons of Alzheimer’s disease brain and is loaded into DNA replication forks in neurons challenged with beta-amyloid. J Neurosci 26(43):10949–10957

    Article  CAS  PubMed  Google Scholar 

  18. González-Polo RA, Soler G, Fuentes JM (2004) MPP+: mechanism for its toxicity in cerebellar granule cells. Mol Neurobiol 30(3):253–264

    Article  PubMed  Google Scholar 

  19. Marini AM, Schwartz JP, Kopin IJ (1989) The neurotoxicity of 1-methyl-4-phenylpyridinium in cultured cerebellar granule cells. J Neurosci 9(10):3665–3672

    CAS  PubMed  Google Scholar 

  20. Du Y, Dodel RC, Bales KR, Jemmerson R, Hamilton-Byrd E, Paul SM (1997) Involvement of a caspase-3-like cysteine protease in 1-methyl-4-phenylpyridinium-mediated apoptosis of cultured cerebellar granule neurons. J Neurochem 69(4):1382–1388

    Article  CAS  PubMed  Google Scholar 

  21. Alvira D, Tajes M, Verdaguer E, de Arriba SG, Allgaier C, Matute C, Trullas R, Jiménez A, Pallàs M, Camins A (2007) Inhibition of cyclin-dependent kinases is neuroprotective in 1-methyl-4-phenylpyridinium-induced apoptosis in neurons. Neuroscience 146(1):350–365

    Article  CAS  PubMed  Google Scholar 

  22. Arakawa Y, Bito H, Furuyashiki T, Tsuji T, Takemoto-Kimura S, Kimura K, Nozaki K, Hashimoto N, Narumiya S (2003) Control of axon elongation via an SDF-1alpha/Rho/mDia pathway in cultured cerebellar granule neurons. J Cell Biol 161(2):381–391

    Article  CAS  PubMed  Google Scholar 

  23. Knockaert M, Greengard P, Meijer L (2002) Pharmacological inhibitors of cyclin-dependent kinases. Trends Pharmacol Sci 23(9):417–425

    Article  CAS  PubMed  Google Scholar 

  24. Burgers PM (2009) Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem 284(7):4041–4045

    Article  CAS  PubMed  Google Scholar 

  25. Moon AF, Garcia-Diaz M, Batra VK, Beard WA, Bebenek K, Kunkel TA, Wilson SH, Pedersen LC (2007) The X family portrait: structural insights into biological functions of X family polymerases. DNA Repair (Amst) 6(12):1709–1725

    Article  CAS  Google Scholar 

  26. Servant L, Bieth A, Hayakawa H, Cazaux C, Hoffmann JS (2002) Involvement of DNA polymerase beta in DNA replication and mutagenic consequences. J Mol Biol 315(5):1039–1047

    Article  CAS  PubMed  Google Scholar 

  27. Lee MY, Toomey NL, Wright GE (1985) Differential inhibition of human placental DNA polymerases delta and alpha by BuPdGTP and BuAdATP. Nucleic Acids Res 13(23):8623–8630

    Article  CAS  PubMed  Google Scholar 

  28. Vens C, Dahmen-Mooren E, Verwijs-Janssen M, Blyweert W, Graversen L, Bartelink H, Begg AC (2002) The role of DNA polymerase beta in determining sensitivity to ionizing radiation in human tumor cells. Nucleic Acids Res 30(13):2995–3004

    Article  CAS  PubMed  Google Scholar 

  29. Neijenhuis S, Begg AC, Vens C (2005) Radiosensitization by a dominant negative to DNA polymerase beta is DNA polymerase beta-independent and XRCC1-dependent. Radiother Oncol 76(2):123–128

    Article  CAS  PubMed  Google Scholar 

  30. Husain I, Morton BS, Beard WA, Singhal RK, Prasad R, Wilson SH, Besterman JM (1995) Specific inhibition of DNA polymerase beta by its 14 kDa domain: role of single- and double-stranded DNA binding and 5′-phosphate recognition. Nucleic Acids Res 23(9):1597–1603

    Article  CAS  PubMed  Google Scholar 

  31. Feddersen RM, Ehlenfeldt R, Yunis WS, Clark HB, Orr HT (1992) Disrupted cerebellar cortical development and progressive degeneration of Purkinje cells in SV40 T antigen transgenic mice. Neuron 9(5):955–966

    Article  CAS  PubMed  Google Scholar 

  32. Mosch B, Morawski M, Mittag A, Lenz D, Tarnok A, Arendt T (2007) Aneuploidy and DNA replication in the normal human brain and Alzheimer’s disease. J Neurosci 27(26):6859–6867

    Article  CAS  PubMed  Google Scholar 

  33. Lee SS, Kim YM, Junn E, Lee G, Park KH, Tanaka M, Ronchetti RD, Quezado MM, Mouradian MM (2003) Cell cycle aberrations by alpha-synuclein over-expression and cyclin B immunoreactivity in Lewy bodies. Neurobiol Aging 24(5):687–696

    Article  CAS  PubMed  Google Scholar 

  34. Raji NS, Krishna TH, Rao KS (2002) DNA-polymerase alpha, beta, delta and epsilon activities in isolated neuronal and astroglial cell fractions from develo** and aging rat cerebral cortex. Int J Dev Neurosci 20(6):491–496

    Article  CAS  PubMed  Google Scholar 

  35. Siegel RL, Kalf GF (1982) DNA polymerase beta involvement in DNA endoreduplication in rat giant trophoblast cells. J Biol Chem 257(4):1785–1790

    CAS  PubMed  Google Scholar 

  36. Friedberg EC, Wagner R, Radman M (2002) Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 296(5573):1627–1630

    Article  CAS  PubMed  Google Scholar 

  37. Martin LJ (2008) DNA damage and repair: relevance to mechanisms of neurodegeneration. J Neuropathol Exp Neurol 67(5):377–387

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the Program of National Natural Science Foundation of China (No. 30570627 and No. 30870866).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Additional information

The authors Zhentao Zhang and Xuebing Cao are equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Cao, X., **ong, N. et al. DNA polymerase-β is required for 1-methyl-4-phenylpyridinium-induced apoptotic death in neurons. Apoptosis 15, 105–115 (2010). https://doi.org/10.1007/s10495-009-0425-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0425-8

Keywords

Navigation