Log in

Assessment of a Two-Way Coupling Methodology Between a Flow and a High-Order Nonlinear Acoustic Unstructured Solvers

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A two-way coupling on unstructured meshes between a flow and a high-order acoustic solvers for jet noise prediction is considered. The flow simulation aims at generating acoustic sources in the near field while the acoustic simulation solves the full Euler equations, thanks to a discontinuous Galerkin method, in order to take into account nonlinear acoustic propagation effects. This methodology is firstly validated on academic cases involving nonlinear sound propagation, shock waves and convection of aerodynamic perturbations. The results are compared to analytical solutions and direct computations. A good behaviour of the coupling is found regarding the targeted space applications. An application on a launch pad model is then simulated to demonstrate the robustness and reliability of the present approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Seiner, J.M.: Advances in high speed jet aeroacoustics. In: 9th AIAA/NASA Aeroacoustics Conference, no. 84–2275. Williamsburg, USA (1984). https://doi.org/10.2514/6.1984-2275

  2. Tam, C.K.W.: Supersonic jet noise. Annu. Rev. Fluid Mech. 27, 17–43 (1995). https://doi.org/10.1146/annurev.fl.27.010195.000313

    Article  Google Scholar 

  3. Bailly, C., Fujii, K.: High-speed jet noise. Bull. JSME 3(1, 15-00496), 1–13 (2016). https://doi.org/10.1299/mer.15-00496

    Google Scholar 

  4. Chemoul, B., Louaas, E., Roux, P., Schmitt, D., Pourcher, M.: Ariane 5 Flight Environments. Acta Astronaut. 48(5–12), 275–285 (2001). https://doi.org/10.1016/S0094-5765(01)00026-1

    Article  Google Scholar 

  5. Tam, C.K.W., Viswanathan, K., Ahuja, K.K., Panda, J.: The source of jet noise: experimental evidence. J. Fluid Mech. 615, 253–292 (2008). https://doi.org/10.1017/S0022112008003704

    Article  MATH  Google Scholar 

  6. Gély, D., Elias, G., Bresson, C., Foulon, H., Radulovic, S.: Reduction of supersonic jet noise - application to the Ariane 5 launch vehicle. In: 6th AIAA/CEAS Aeroacoustics Conference, pp. 2000–2026. Lahaina (2000). https://doi.org/10.2514/6.2000-2026

  7. Eldred, K.M.: Acoustic loads generated by the propulsion system. Special Publication 8072, NASA (1971)

  8. Varnier, J., Koudriavstsev, V., Safronov, A.: Simplified approach of jet aerodynamics with a view to acoustics. AIAA J. 44(7), 1690–1693 (2006). https://doi.org/10.2514/1.5087

    Article  Google Scholar 

  9. Kandula, M.: Near-field acoustics of clustered rocket engines. J. Sound Vib. 309 (3–5), 852–857 (2007). https://doi.org/10.1016/j.jsv.2007.06.078

    Article  Google Scholar 

  10. Haynes, J., Kenny, J.: Modifications to the NASA SP-8072 distributed source Method II for Ares I Lift-off Environment Predictions. In: 15th AIAA/CEAS Aeroacoustics Conference, no. 2009–3160. Miami (2009). https://doi.org/10.2514/6.2009-3160

  11. de Cacqueray, N., Bogey, C., Bailly, C.: Investigation of a High-Mach-Number Overexpanded Jet using Large-eddy Simulation. AIAA J. 49(10), 2171–2182 (2011). https://doi.org/10.2514/1.J050952

    Article  Google Scholar 

  12. Dargaud, J.-B., Troyes, J., Lamet, J.-M., Tessé, L., Vuillot, F., Bailly, C.: Numerical study of solid-rocket motor ignition overpressure wave including infrared radiation. J. Propuls. Power 30(1), 164–174 (2014). https://doi.org/10.2514/1.B34824

    Article  Google Scholar 

  13. Troyes, J., Vuillot, F., Lambaré, H., Espinosa Ramos, A.: Numerical Study of Free Supersonic Hot Jet on Unstructured Grids with Emphasis on Aerodynamics and Resulting Radiated Noise. In: 22nd AIAA/CEAS Aeroacoustics Conference, no. 2016–2734. Lyon. https://doi.org/10.2514/6.2016-2734 (2016)

  14. Brès, G., Ham, F., Nichols, J., Lele, S.: Unstructured large-eddy simulations of supersonic jets. AIAA J. 55, 1164–1184 (2017). https://doi.org/10.2514/1.J055084

    Article  Google Scholar 

  15. Langenais, A., Vuillot, F., Troyes, J., Bailly, C.: Numerical Investigation of the Noise Generated by a Rocket Engine at Lift-off Conditions using a Two-way Coupled CFD-CAA Method. In: 23rd AIAA/CEAS Aeroacoustics Conference, no. 2017–3212. Denver. https://doi.org/10.2514/6.2017-3212 (2017)

  16. Fujii, K., Nonomura, T., Tsutsumi, S.: Toward accurate simulation and analysis of strong acoustic wave phenomena - a review from the experience of our study on rocket problems. Int. J. Numer. Methods Fluids 64, 1412–1432 (2010). https://doi.org/10.1002/fld.2446

    Article  MATH  Google Scholar 

  17. Tsutsumi, S., Ishii, S., Ui, K., Tokudome, S., Wada, K.: Assessing Prediction and Reduction Technique of Lift-off Acoustics Using Epsilon Flight Data. In: 53rd AIAA Aerospace Sciences Meeting, no. 2015–1007. Kissimmee (2015). https://doi.org/10.2514/6.2015-1007

  18. Lyrintzis, A.S.: Surface integral methods in computational aeroacoustics - from the (CFD) near-field to the (Acoustic) far-field. Int. J. Aeroacous. 2(2), 95–128 (2003). https://doi.org/10.1260/147547203322775498

    Article  Google Scholar 

  19. Uzun, A., Lyrintzis, A.S., Blaisdell, G.A.: Coupling of integral acoustics methods with LES for jet noise prediction. Int. J. Aeroacous. 3(4), 297–346 (2005). https://doi.org/10.1260/1475472043499290

    Article  Google Scholar 

  20. Rahier, G., Prieur, J., Vuillot, F., Lupoglazoff, N., Biancherin, A.: Investigation of integral surface formulations for acoustic post-processing of unsteady aerodynamic jet simulations. Aerosp. Sci. Technol. 8, 453–467 (2004). https://doi.org/10.1016/j.ast.2004.04.005

    Article  MATH  Google Scholar 

  21. Troyes, J., Vuillot, F., Lambaré, H., Espinosa Ramos, A.: Study of Im**ing Supersonic Jet Noise with Aerodynamics and Acoustics Numerical Simulations. In: 30th International Symposium on Space Technology and Science, no. 2015–399. Kobe-Hyogo (2015)

  22. de Cacqueray, N., Bogey, C.: Noise of an overexpanded mach 3.3 jet: non-linear propagation effects and correlations with flows. Int. J. Aeroacous. 13(7 & 8), 607–632 (2014). https://doi.org/10.1260/1475-472X.13.7-8.607

    Article  Google Scholar 

  23. Utzmann, J., Munz, C.-D., Dumbser, M., Sonnendrücker, E., Salmon, S., Jund, S., Frénod, E.: Numerical Simulation of Turbulent Flows and Noise Generation, vol. 104, chap. Fluid-Acoustic Coupling and Wave Propagation, pp. 47–74. Springer (2009). https://doi.org/10.1007/978-3-540-89956-3_3

  24. Guenanff, R.: Couplage instationnaire Navier-Stokes/Euler pour la génération et le rayonnement des sources de bruit aérodynamique. Ph.D. thesis, Université de Rennes I (2004)

  25. Djambazov, G., Lai, C.-H., Pericleous, K.: On the coupling of Navier-Stokes and Linearied Euler equations for aeroacoustic simulation. Comput. Vis. Sci. 3, 9–12 (2000). https://doi.org/10.1007/s007910050045

    Article  Google Scholar 

  26. Bogey, C., Barré, S., Juvé, D., Bailly, C.: Simulation of a hot coaxial jet: direct noise prediction and flow-acoustics correlations. Phys. Fluids 21, 1–14 (2009). https://doi.org/10.1063/1.3081561

    Article  MATH  Google Scholar 

  27. Sescu, A., Sassanis, V., Collins, E., Harris, R., Luke, E.: Assessing Acoustic Source Forcing Tools for Launch Vehicle Jet Noise Prediction. In: 21st AIAA/CEAS Aeroacoustics Conference, no. 2015–2381. Dallas (2015). https://doi.org/10.2514/6.2015-2381

  28. Harris, R., Collins, E., Luke, E., Sescu, A.: Coupled Overset Unstructured Discontinuous Galerkin Method for Launch Environment Acoustics Prediction,. In: 21st AIAA/CEAS Aeroacoustics Conference, no. 2015–2538. Dallas (2015). https://doi.org/10.2514/6.2015-2538

  29. Labbé, O., Peyret, C., Rahier, G., Huet, M.: A CFD/CAA coupling method applied to jet noise prediction. Comput. Fluids 86, 1–13 (2013). https://doi.org/10.1016/j.compfluid.2013.07.013

    Article  MATH  Google Scholar 

  30. Borrel, M., Halpern, L., Ryan, J.: Euler/Navier-Stokes Coupling for Multiscale Aeroacoustic Problems. In: 20th AIAA Computational Fluid Dynamics Conference, no. 2011–3047. Honolulu (2011). https://doi.org/10.2514/6.2011-3047

  31. Léger, R., Peyret, C., Piperno, S.: Coupled discontinuous Galerkin / finite difference solver on hybrid meshes for computational aeroacoustics. AIAA J. 50(2), 338–349 (2012). https://doi.org/10.2514/1.J051110

    Article  Google Scholar 

  32. Labbé, O., Peyret, C.: A Hybrid LES/CAA Method Applied to a 3D Shear Flow Simulation. In: 6th International Conference on Computational Methods for Coupled Problems in Science and Engineering, pp. 501–511. Venice (2015)

  33. Hardin, J., Ristorcelli, J., Tam, C.: (eds.) ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics (CAA) no. 3300. Cleveland (1994)

  34. Tam, C., Hardin, J. (eds.) Second Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, no. 3352. Tallahassee (1997)

  35. Hardin, J., Huff, D., Tam, C. (eds.) Third Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, no. 2000-209790. Cleveland (2000)

  36. Dahl, M., Envia, E., Huff, D., Tam, C. (eds.) Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, no. 2004-212954. Brook Park (2004)

  37. Yee, H., Sandham, N., Djomehri, M.: Low-dissipative high-order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150, 199–238 (1999). https://doi.org/10.1006/jcph.1998.6177

    Article  MathSciNet  Google Scholar 

  38. Refloch, A., Courbet, B., Murrone, A., Villedieu, P., Laurent, C., Gilbank, P., Troyes, J., Tessé, L., Chaineray, G., Dargaud, J.-B., Quémerais, E., Vuillot, F.: CEDRE Software. Aerosp. Lab. J. 2(11), 1–10 (2011)

    Google Scholar 

  39. Delorme, P., Mazet, P., Peyret, C., Ventribout, Y.: Computational aeroacoustics applications based on a discontinuous Galerkin method. Comptes Rendus Mécanique 333(9), 676–682 (2005). https://doi.org/10.1016/j.crme.2005.07.007

    Article  MATH  Google Scholar 

  40. Langenais, A., Troyes, J., Peyret, C., Chaineray, G.: Couplage CFD-CAA et propagation non linéaire. In: 13eme Congrès Français d’Acoustique, no. 000150. Le Mans, France (2016)

  41. Hirsch, C.: Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows, vol. 2 of 978-0-471-92452-4, Wiley (1990)

  42. Hartmann, R., Houston, P.: Adaptative discontinuous Galerkin finite element methods for the compressible Euler equations. J. Comput. Phys. 183, 508–532 (2002). https://doi.org/10.1006/jcph.2002.7206

    Article  MathSciNet  MATH  Google Scholar 

  43. Peyret, C., Delorme, P.: hp Discontinuous Galerkin Method for Computational Aeroacoustics. In: 13th AIAA/CEAS Aeroacoustics Conference, no. 2007–3475. Rome. https://doi.org/10.2514/6.2007-3475 (2007)

  44. Quémerais, E.: Coupling with interpolation parallel interface. http://sites.onera.fr/cwipi/ (2016)

  45. Cunha, G., Redonnet, S.: On the signal degradation induced by the interpolation and the sampling rate reduction in aeroacoustics hybrid methods. Int. J. Numer. Methods Fluids 71(7), 910–929 (2012). https://doi.org/10.1002/fld.3693

    Article  MathSciNet  Google Scholar 

  46. Tam, C.K.W.: Computational aeroacoustics: issues and methods. AIAA J. 33 (10), 1788–1796 (1995). https://doi.org/10.2514/3.12728

    Article  MATH  Google Scholar 

  47. ISO 9613-1:1993 - acoustics - attenuation of sound during propagation outdoors - part 1: Air absorption (1993)

  48. Blackstock, D.T.: Connection between the Fay and Fubini solutions for plane sound waves of finite amplitude. J. Acoust. Soc. Am. 39(6), 1019–1026 (1966). https://doi.org/10.1121/1.1909986

    Article  MathSciNet  MATH  Google Scholar 

  49. Gallagher, J.A., McLaughlin, D.K.: Experiments on the Non Linear Characteristics of Noise Propagation from Low and Moderate Reynolds Number Supersonic Jets. In: 7th AIAA Aeroacoustics Conference, no. 81–2041. Palo Alto (1981). https://doi.org/10.2514/6.1981-2041

  50. Liepmann, H., Roshko, A.: Element of Gasdynamics. Wiley, chap. One-dimensional wave motion (1959). https://doi.org/10.1002/aic.690050234

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the french national space agency CNES and the ONERA’s scientific direction. The authors are grateful to H. Lambaré, technical referee at CNES for launchers acoustic environment. Special thanks go to J. Troyes from ONERA for his technical support during all this work.

Funding

Financial support for the first author was provided by ONERA and CNES under convention No. 5100015478.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Langenais.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langenais, A., Vuillot, F., Peyret, C. et al. Assessment of a Two-Way Coupling Methodology Between a Flow and a High-Order Nonlinear Acoustic Unstructured Solvers. Flow Turbulence Combust 101, 681–703 (2018). https://doi.org/10.1007/s10494-018-9928-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-9928-0

Keywords

Navigation