Log in

Complete mitochondrial genomes of Thyreophagus entomophagus and Acarus siro (Sarcoptiformes: Astigmatina) provide insight into mitogenome features, evolution, and phylogeny among Acaroidea mites

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Mites from the Acaroidea (Sarcoptiformes: Astigmatina) are important pests of various stored products, posing potential threats to preserved foods. In addition, mites can cause allergic diseases. Complete mitochondrial genomes (mitogenomes) are valuable resources for different research fields, including comparative genomics, molecular evolutionary analysis, and phylogenetic inference. We sequenced and annotated the complete mitogenomes of Thyreophagus entomophagus and Acarus siro. A comparative analysis was made between mitogenomic sequences from 10 species representing nine genera within Acaroidea. The mitogenomes of T. entomophagus and A. siro contained 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and one control region. In Acaroidea species, mitogenomes have highly conserved gene size and order, and codon usage. Among Acaroidea mites, most PCGs were found to be under purifying selection, implying that most PCGs might have evolved slowly. Our findings showed that nad4 evolved most rapidly, whereas cox1 and cox3 evolved most slowly. The evolutionary rates of Acaroidea vary considerably across families. In addition, selection analyses were also performed in 23 astigmatid mite species, and the evolutionary rate of the same genes in different superfamilies exhibited large differences. Phylogenetic results are mostly consistent with those identified by previous phylogenetic studies on astigmatid mites. The monophyly of Acaroidea was rejected, and the Suidasiidae and Lardoglyphidae appeared to deviate from the Acaroidea branch. Our research proposed a review of the current Acaroidea classification system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are not publicly available due [the mitogenomes of Thyreophagus entomophagus and Acarus siro submitted on GenBank under the accession number OK166751 and OK040814, but not released yet] but are available from the corresponding author on reasonable request.

References

  • Alfaro ME, Zoller S, Lutzoni F (2003) Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrap** in assessing phylogenetic confidence. Mol Biol Evol 20(2):255–266

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aspaly G, Stejskal V, Pekar S, Hubert J (2007) Temperature-dependent population growth of three species of stored product mites (Acari: Acaridida). Exp Appl Acarol 42(1):37–46

    Article  PubMed  Google Scholar 

  • Bernt M, Donath A, Juehling F, Externbrink F, Florentz C, Fritzsch G et al (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69(2):313–319

    Article  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552

    Article  CAS  PubMed  Google Scholar 

  • Chang H, Qiu Z, Yuan H, Wang X, Li X, Sun H et al (2020) Evolutionary rates of and selective constraints on the mitochondrial genomes of Orthoptera insects with different wing types. Mol Phylogen Evol 145:106

    Article  Google Scholar 

  • Dermauw W, Van Leeuwen T, Vanholme B, Tirry L (2009) The complete mitochondrial genome of the house dust mite Dermatophagoides pteronyssinus (Trouessart): a novel gene arrangement among arthropods. BMC Genomics 10(1):107

    Article  PubMed  PubMed Central  Google Scholar 

  • Domes K, Maraun M, Scheu S, Cameron SL (2008) The complete mitochondrial genome of the sexual oribatid mite Steganacarus magnus: genome rearrangements and loss of tRNAs. BMC Genomics 9(1):1–13

    Article  Google Scholar 

  • Dong F, Fang W, Fang Y, Zhan X, Tao D, Su X et al (2020) The complete mitochondrial genome of Suidasia nesbitti and phylogenetic relationships of Astigmata. Front Ecol Evol 8:194

    Article  Google Scholar 

  • Esteban R, Dona J, Vierna J, Vizcaino A, Serrano D, Jovani R (2018) The complete mitochondrial genome of the feather mite Trouessartia rubecula Jablonska, 1968 (Astigmata: Analgoidea: Trouessartiidae). Mitochondrial DNA Part B-Resour 3(2):652–654

    Article  Google Scholar 

  • Fang WX, Dong FY, Sun ET, Tao DD, Wang Y, Xu JY et al (2020) De novo sequence of the mitochondrial genome of Tyrophagus putrescentiae (Acari: Sarcoptiformes) including 22 tRNA sequences and the largest non-coding region. Exp Appl Acarol 80(4):521–530

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Tao L, Zhou X, Liu L, Li F, Yang Q et al (2021a) The complete mitochondrial genome of Scatoglyphus polytrematus (Acari: Acaridae). Mitochondrial DNA Part B-Resour 6(6):1680–1681

    Article  Google Scholar 

  • Fang Y, Xu J, Zhan X, Fang W, Dong F, Su X et al (2021b) Complete mitochondrial genomes of the two Glycyphagoidea mites Lepidoglyphus destructor and Gohieria fusca (Acari: Sarcoptiformes, Glycyphagoidea): revelation of a novel feature of the largest non-coding region. J Stored Prod Res 93:101840

    Article  CAS  Google Scholar 

  • Gu XB, Liu GH, Song HQ, Liu TY, Yang GY, Zhu XQ (2014) The complete mitochondrial genome of the scab mite Psoroptes cuniculi (Arthropoda: Arachnida) provides insights into Acari phylogeny. Parasites Vectors 7(1):340

    Article  Google Scholar 

  • Han YD, Min GS (2017) Complete mitochondrial genome of the feather mite Ardeacarus ardeae (Acari, Sarcoptiformes, Pterolichidae). Mitochondrial DNA Part B-Resour 2(1):41–42

    Article  Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical-test of bootstrap** as a method for assessing confidence in phylogenetic analysis. Syst Biol 42(2):182–192

    Article  Google Scholar 

  • Hubert J, Stejskal V, Athanassiou CG, Throne JE (2018) Health hazards associated with arthropod infestation of stored products. Ann Rev Entomol 63:553–573

    Article  CAS  Google Scholar 

  • Hughes AM (1976) The mites of stored food and houses, 2nd edn. Her Majesty’s Stationery Office, London

    Google Scholar 

  • Iglesias-Souto J, Sanchez-Machin I, Iraola V, Poza P, Gonzalez R, Matheu V (2009) Oral mite anaphylaxis by Thyreophagus entomophagus in a child: a case report. Clin Mol Allergy 7:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klimov PB, OConnor BM (2008) Origin and higher-level relationships of psoroptidian mites (Acari: Astigmata: Psoroptidia): evidence from three nuclear genes. Mol Phylogenet Evol 47(3):1135–1156

    Article  CAS  PubMed  Google Scholar 

  • Klimov PB, OConnor BM (2009) Improved tRNA prediction in the American house dust mite reveals widespread occurrence of extremely short minimal tRNAs in acariform mites. BMC Genomics 10(1):598

    Article  PubMed  PubMed Central  Google Scholar 

  • Klimov PB, OConnor BM (2013) Is permanent parasitism reversible? Critical evidence from early evolution of house dust mites. Syst Biol 62(3):411–423

    Article  PubMed  Google Scholar 

  • Krantz GW (1971) A manual of Acarology. O.S.U. Book Stores, Corvallis

  • Krantz GW, Walter DE (2009) A manual of acarology. Texas Tech University Press, Lubbock

    Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34(3):772–773

    CAS  PubMed  Google Scholar 

  • Laslett D, Canback B (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24(2):172–175

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, Wang J (2016) The complete mitochondrial genome of Histiostoma blomquisti (Acari: Histiostomatidae). Mitochondrial DNA Part B-Resour 1(1):671–673

    Article  Google Scholar 

  • Li K, Liang AP (2018) Hemiptera mitochondrial control region: new sights into the structural organization, phylogenetic utility, and roles of tandem repetitions of the noncoding segment. Int J Mol Sci 19(5):1292

    Article  PubMed Central  Google Scholar 

  • Li WN, Xue XF (2019) Mitochondrial genome reorganization provides insights into the relationship between oribatid mites and astigmatid mites (Acari: Sarcoptiformes: Oribatida). Zool J Linn Soc 187(3):585–598

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Minoche AE, Dohm JC, Himmelbauer H (2011) Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol 12(11):1–15

    Article  Google Scholar 

  • Mofiz E, Seemann T, Bahlo M, Holt D, Currie BJ, Fischer K et al (2016) Mitochondrial genome sequence of the scabies mite provides insight into the genetic diversity of individual scabies infections. PLoS Negl Trop Dis 10(2):1–16

    Article  Google Scholar 

  • Musken H, Franz JT, Wahl R, Paap A, Cromwell O, Masuch G et al (2003) Sensitization to different mite species in German farmers: in vitro analyses. J Investig Allergol Clin Immunol 13(1):26–35

    PubMed  Google Scholar 

  • OConnor BM, Giesen KTM, FS L (1982) Two new species of Marmosopus (Acari: Astigmata) from rodents of the genus Scotinomys (Cricetidae) in Central America. Museum of Zoology, University of Michigan, Ann Arbor

    Google Scholar 

  • Pons J, Bover P, Bidegaray-Batista L, Arnedo MA (2019) Arm-less mitochondrial tRNAs conserved for over 30 millions of years in spiders. BMC Genomics 20(1)

  • Rojas EW, Klimov PB (2007) Mites of the genus Rhizoglyphus (Acari: Acaridae) infesting cultivated bulbs in central and southern Chile, with taxonomic notes on Acarus hyacinthi Boisduval and Rhizoglyphus frickorum Nesbitt. Int J Acarol 33(1):87–90

    Article  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaeffer S, Koblmueller S, Klymiuk I, Thallinger GG (2018) The mitochondrial genome of the oribatid mite Paraleius leontonychus: new insights into tRNA evolution and phylogenetic relationships in acariform mites. Sci Rep 8(1):1–12

    CAS  Google Scholar 

  • Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:686–689

    Article  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Su X, Fang Y, Xu JY, Fang WX, Zhan XB, Fang Y et al (2020) The complete mitochondrial genome of the storage mite pest Tyrophagus fanetzhangorum (Acari: Acaridae). Syst Appl Acarol 25(9):1693–1701

    Google Scholar 

  • Sun ET, Li CP, Nie LW, Jiang YX (2014a) The complete mitochondrial genome of the brown leg mite, Aleuroglyphus ovatus (Acari: Sarcoptiformes): evaluation of largest non-coding region and unique tRNAs. Exp Appl Acarol 64(2):141–157

    Article  CAS  PubMed  Google Scholar 

  • Sun E, Li C, Li S, Gu S, Nie L (2014b) Complete mitochondrial genome of Caloglyphus berlesei (Acaridae: Astigmata): the first representative of the genus Caloglyphus. J Stored Prod Res 59:282–284

    Article  Google Scholar 

  • Van Hage-Hamsten M, Johansson SGO (1992) Storage mites. Exp Appl Acarol 16(1):117–128

    Article  PubMed  Google Scholar 

  • Wang T, Zhang S, Pei T, Yu Z, Liu J (2019) Tick mitochondrial genomes: structural characteristics and phylogenetic implications. Parasites Vectors 12(1):1–15

    Article  Google Scholar 

  • Wang MQ, Yao R, Jiang F, Zhan XD (2021) Determination of the complete mitochondrial genome of Lardoglyphus konoi (Acari: Astigmata). Mitochondrial DNA Part B-Resour 6(11):3222–3223

    Article  Google Scholar 

  • Webster LMI, Thomas RH, McCormack GP (2004) Molecular systematics of Acarus siro s. lat., a complex of stored food pests. Mol Phylogenet Evol 32(3):817–822

    Article  CAS  PubMed  Google Scholar 

  • Xue XF, Guo JF, Dong Y, Hong XY, Shao R (2016) Mitochondrial genome evolution and tRNA truncation in Acariformes mites: new evidence from eriophyoid mites. Sci Rep 6

  • Xue XF, Deng W, Qu SX, Hong XY, Shao R (2018) The mitochondrial genomes of sarcoptiform mites: are any transfer RNA genes really lost? BMC Genomics 19(1):1–11

    Article  Google Scholar 

  • Young MR, Proctor HC, deWaard JR, Hebert PDN (2019) DNA barcodes expose unexpected diversity in Canadian mites. Mol Ecol 28(24):5347–5359

    Article  CAS  PubMed  Google Scholar 

  • Zhan XB, Chen B, Fang Y, Dong FY, Fang WX, Luo Q et al (2021) Mitochondrial analysis of oribatid mites provides insights into their atypical tRNA annotation, genome rearrangement and evolution. Parasites Vectors 14(1)

  • Zhang S, Alvarado AS (2018) Planarian high molecular weight DNA isolation by spooling. Methods Mol Biol (Clifton NJ) 1774:277–284

    CAS  Google Scholar 

  • Zhang Z, Li J, Zhao XQ, Wang J, Wong GKS, Yu J (2006) KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genom Proteom Bioinform 4(4):259–263

    Article  CAS  Google Scholar 

  • Zhang W, Cheng J, Zhao Y, Niu D, Guo H (2021) Molecular identification and DNA barcode screening of acaroid mites in ground flour dust. Genome 64(9):869–877

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Li C (2020) Sequencing and analysis of the complete mitochondrial genome of Carpoglyphus lactis (Acari: Carpoglyphidae). Acta Entomol Sin 63(3):354–364

    Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Wiley Editing Services (https://wileyeditingservices.com/cn/) for its linguistic assistance during the preparation of this manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (No. 31870352).

Author information

Authors and Affiliations

Authors

Contributions

Yu Fang, and Ming-Zhong Sun conceived and wrote the manuscript. Ying Fang, Ze-Tao Zuo, Lu-Yao Liu, Ling-Miao Chu, Lan Ding, and Cai-**ao Hu prepared the figures and data, and analyzed the data. Fei-Yan Li and RenRui Han contributed to discussions during the data analyses. **ng-Quan **a did the phylogenetic analyses. Shu-Lin Zhou, and En-Tao Sun conceived the study and revised the manuscript.

Corresponding authors

Correspondence to **ngquan **a, Shulin Zhou or Entao Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

No specific permits were required for the mites collected for this study in China. The mite specimens were collected from park, and the field studies did not involve endangered or protected species. The species in our study are common mites and are not included in the “List of Protected Animals in China”.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Sun, M., Fang, Y. et al. Complete mitochondrial genomes of Thyreophagus entomophagus and Acarus siro (Sarcoptiformes: Astigmatina) provide insight into mitogenome features, evolution, and phylogeny among Acaroidea mites. Exp Appl Acarol 88, 57–74 (2022). https://doi.org/10.1007/s10493-022-00745-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-022-00745-4

Keywords

Navigation