Log in

A Memetic Approach to Multi-Disciplinary Design and Numerical Optimization Problems using Intensify Slime Mould Optimizer

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

A new memetic metaheuristic optimizer, hybridizing the classical Slime Mould Optimization Algorithm (SMA) with Harris hawk’s Optimizer (HHO), is developed. The proposed hSMA-HHO is based on SMA- a swarm-inspired population metaheuristics algorithm with a notable approach in global optimization and HHO- a nature-inspired algorithm based on the supportive behavior and hunting style of Harris hawks. Although both algorithms perform well individually, they still require improvement for better efficacious results. The exploitation and exploration behavior are improved. Also, the problem of trap** in local optima is removed as observed by investigating the proposed algorithm on an extensive set of standard benchmarks comprising multiple functions with various dimensions. The results achieved are analyzed and compared with other recent metaheuristic algorithms. Furthermore, convergence graphs and statistical analysis prove the supremacy of the proposed hSMA-HHO algorithm over other up-to-date metaheuristics algorithms. The proposed algorithm is also checked to solve the optimal design of 11 well-recognized constrained engineering problems. Analysis and comparison of results reveal that the proposed hSMA-HHO algorithm is an encouraging and viable optimization approach for elucidating different engineering design problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Lin WY (2016) A novel 3D fruit fly optimization algorithm and its applications in economics. Neural Comput Appl. https://doi.org/10.1007/s00521-015-1942-8

    Article  Google Scholar 

  2. Cheng Y, Zhao S, Cheng B, Hou S, Shi Y, Chen J (2018) Modeling and optimization for collaborative business process towards IoT applications. Mob Inf Syst. https://doi.org/10.1155/2018/9174568

    Article  Google Scholar 

  3. Wang X, Choi TM, Liu H, Yue X (2018) A novel hybrid ant colony optimization algorithm for emergency transportation problems during post-disaster scenarios. IEEE Trans Syst Man Cybern Syst 48:556. https://doi.org/10.1109/TSMC.2016.2606440

    Article  Google Scholar 

  4. Quesada I, Grossmann IE (1996) Alternative bounding approximations for the global optimization of various engineering design problems. In: Grossmann IE (ed) Global optimization in engineering design. Nonconvex optimization and its applications, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5331-8_10

    Chapter  Google Scholar 

  5. Venkata Rao R, Waghmare GG (2017) A new optimization algorithm for solving complex constrained design optimization problems. Eng Optim 49(1):60–83. https://doi.org/10.1080/0305215X.2016.1164855

    Article  Google Scholar 

  6. El-Kenawy E-SM, Eid MM, Saber M, Ibrahim A (2020) MbGWO-SFS: Modified Binary Grey Wolf Optimizer Based on Stochastic Fractal Search for Feature Selection. IEEE Access. https://doi.org/10.1109/access.2020.3001151

    Article  PubMed  Google Scholar 

  7. Nouiri M, Bekrar A, Jemai A, Niar S, Ammari AC (2018) An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem. J Intell Manuf. https://doi.org/10.1007/s10845-015-1039-3

    Article  Google Scholar 

  8. Li Y, Wang J, Zhao D, Li G, Chen C (2018) A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making. Energy. https://doi.org/10.1016/j.energy.2018.07.200

    Article  Google Scholar 

  9. Yousri D, Fathy A, Babu TS (2020) Recent methodology based Harris Hawks optimizer for designing load frequency control incorporated in multi-interconnected renewable energy plants. Sustain Energy, Grids Netw 22. https://doi.org/10.1016/j.segan.2020.100352

  10. Al-Hajj R, Assi A (2017) Estimating solar irradiance using genetic programming technique and meteorological records. AIMS Energy. https://doi.org/10.3934/energy.2017.5.798

    Article  Google Scholar 

  11. Al-Hajj R, Assi A (2016) An evolutionary computing approach for estimating global solar radiation. IEEE International Conference on Renewable Energy Research and Applications (ICRERA), Birmingham, UK, pp 285–290. https://doi.org/10.1109/icrera.2016.7884553 

  12. Wehrens R, Buydens L (2006) Classical and nonclassical optimization methods. In: Encyclopedia of Analytical Chemistry. https://doi.org/10.1002/9780470027318.a5203

  13. Steffan N, Heydt G (2012) Quadratic programming and related techniques for the calculation of locational marginal prices in distribution systems. https://doi.org/10.1109/NAPS.2012.6336310

  14. Mafarja M et al (2018) Evolutionary Population Dynamics and Grasshopper Optimization approaches for feature selection problems. Knowledge-Based Syst 145:25–45. https://doi.org/10.1016/j.knosys.2017.12.037

    Article  Google Scholar 

  15. Heidari AA, Ali Abbaspour R, RezaeeJordehi A (2017) An efficient chaotic water cycle algorithm for optimization tasks. Neural Comput Appl 28(1):57–85. https://doi.org/10.1007/s00521-015-2037-2

    Article  Google Scholar 

  16. Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: A new method for stochastic optimization. Futur Gener Comput Syst 111:323. https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  17. Kennedy J, Eberhart R (1995) Particle swarm optimization. Proceedings of ICNN’95 -International Conference on Neural Networks 4:1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  18. Fouad MM, El-Desouky AI, Al-Hajj R, El-Kenawy ESM (2020) Dynamic Group-Based Cooperative Optimization Algorithm. IEEE Access 8:148378–148403. https://doi.org/10.1109/ACCESS.2020.3015892

    Article  Google Scholar 

  19. Houssein EH, Saad MR, Hashim FA, Shaban H, Hassaballah M (2020) Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell 94:103731. https://doi.org/10.1016/j.engappai.2020.103731

    Article  Google Scholar 

  20. Khatri A, Gaba A, Rana K, Kumar V (2020) A novel life choice-based optimizer. Soft Computing 24. https://doi.org/10.1007/s00500-019-04443-z

  21. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: Algorithm and applications. Futur Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  22. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  23. Mirjalili S (2015) Knowledge-Based Systems Moth-flame optimization algorithm : A novel nature-inspired heuristic paradigm. Knowledge-Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  24. Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35. https://doi.org/10.1007/s00366-011-0241-y

    Article  Google Scholar 

  25. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  26. Karaboga D, Basturk B (2007) Artificial Bee Colony (ABC) optimization algorithm for solving constrained optimization problems, vol 4529. https://doi.org/10.1007/978-3-540-72950-1_77

  27. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680. https://doi.org/10.1126/science.220.4598.671

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  28. Qais MH, Hasanien HM, Alghuwainem S (2020) Transient search optimization: a new meta-heuristic optimization algorithm. Appl Intell. https://doi.org/10.1007/s10489-020-01727-y

    Article  Google Scholar 

  29. Kaveh A, Khanzadi M, RastegarMoghaddam M (2020) Billiards-inspired optimization algorithm; a new meta-heuristic method. Structures 27:1722–1739. https://doi.org/10.1016/j.istruc.2020.07.058

    Article  Google Scholar 

  30. Liu Y, Li R (2020) PSA: a photon search algorithm. J Inf Process Syst 16(2):478–493. https://doi.org/10.3745/JIPS.04.0168

    Article  Google Scholar 

  31. Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S (2019) Henry gas solubility optimization: A novel physics-based algorithm. Futur Gener Comput Syst 101:646–667. https://doi.org/10.1016/j.future.2019.07.015

    Article  Google Scholar 

  32. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-Verse Optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513. https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  33. Mirjalili S (2016) SCA: A Sine Cosine Algorithm for solving optimization problems. Knowledge-Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  34. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: Charged system search. Acta Mech. https://doi.org/10.1007/s00707-009-0270-4

    Article  Google Scholar 

  35. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: A Gravitational Search Algorithm. Inf Sci (Ny) 179(13):2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  Google Scholar 

  36. Abedinpourshotorban H, MariyamShamsuddin S, Beheshti Z, Jawawi DNA (2016) “Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm”, Swarm Evol. Comput 26:8–22. https://doi.org/10.1016/j.swevo.2015.07.002

    Article  Google Scholar 

  37. Formato RA (2007) Central force optimization: A new metaheuristic with applications in applied electromagnetics. Prog Electromagn Res. https://doi.org/10.2528/PIER07082403

    Article  Google Scholar 

  38. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: Harmony search. Simulation. https://doi.org/10.1177/003754970107600201

    Article  Google Scholar 

  39. Tabari A, Ahmad A (2017) A new optimization method: Electro-Search algorithm. Comput Chem Eng. https://doi.org/10.1016/j.compchemeng.2017.01.046

    Article  Google Scholar 

  40. Glover F (1989) Tabu Search - Part I. Orsa J Comput 1(3):190–206

    Article  MathSciNet  Google Scholar 

  41. He S, Wu QH, Saunders JR (2009) Group search optimizer: An optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2009.2011992

    Article  Google Scholar 

  42. Rao RV, Savsani VJ, Vakharia DP (2012) Teaching-Learning-Based Optimization: An optimization method for continuous non-linear large scale problems. Inf Sci (Ny) 183(1):1–15. https://doi.org/10.1016/j.ins.2011.08.006

    Article  MathSciNet  Google Scholar 

  43. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–72. https://doi.org/10.1038/scientificamerican0792-66

    Article  ADS  Google Scholar 

  44. Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput. https://doi.org/10.1162/106365603321828970

    Article  PubMed  Google Scholar 

  45. Yao X, Liu Y, Lin G (1999) Evolutionary Programming Made Faster. IEEE Trans Evol Computat 3(2):82–102. https://doi.org/10.1109/4235.771163

    Article  Google Scholar 

  46. Storn R, Price K (1997) Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J Glob Optim. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  Google Scholar 

  47. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713. https://doi.org/10.1109/TEVC.2008.919004

    Article  Google Scholar 

  48. Koza JR (1994) Genetic programming as a means for programming computers by natural selection. Stat Comput 4(2):87–112. https://doi.org/10.1007/BF00175355

    Article  Google Scholar 

  49. Banerjee N, Mukhopadhyay S (2019) HC-PSOGWO: hybrid crossover oriented PSO and GWO based co-evolution for global optimization. 2019 IEEE Region 10 Symposium (TENSYMP), pp 162–167. https://doi.org/10.1109/TENSYMP46218.2019.8971231

  50. Chen H, Wang M, Zhao X (2020) A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems. Appl Math Comput 369:124872. https://doi.org/10.1016/j.amc.2019.124872

    Article  MathSciNet  Google Scholar 

  51. Seyyedabbasi A, Kiani F (2021) I-GWO and Ex-GWO: improved algorithms of the Grey Wolf Optimizer to solve global optimization problems. Eng Comput 37(1):509–532. https://doi.org/10.1007/s00366-019-00837-7

    Article  Google Scholar 

  52. **ao B, Wang R, Xu Y, Wang J, Song W, Deng Y (2019) Simplified salp swarm algorithm. 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), pp 226–230. https://doi.org/10.1109/ICAICA.2019.8873515

  53. Chen X, Tianfield H, Li K (2019) Self-adaptive differential artificial bee colony algorithm for global optimization problems. Swarm Evol Comput 45:70–91. https://doi.org/10.1016/j.swevo.2019.01.003

    Article  Google Scholar 

  54. Tejani GG, Kumar S, Gandomi AH (2019) Multi-objective heat transfer search algorithm for truss optimization. Eng Comput. https://doi.org/10.1007/s00366-019-00846-6

    Article  Google Scholar 

  55. Yimit A, Iigura K, Hagihara Y (2020) Refined selfish herd optimizer for global optimization problems. Expert Syst Appl 139:112838. https://doi.org/10.1016/j.eswa.2019.112838

    Article  Google Scholar 

  56. Mostafa Bozorgi S, Yazdani S (2019) IWOA: An improved whale optimization algorithm for optimization problems. J Comput Des Eng 6(3):243–259

    Google Scholar 

  57. Muhammed DA, Saeed SAM, Rashid TA (2020) Improved Fitness-Dependent Optimizer Algorithm. IEEE Access 8:19074–19088. https://doi.org/10.1109/ACCESS.2020.2968064

    Article  Google Scholar 

  58. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Syst 191:105190. https://doi.org/10.1016/j.knosys.2019.105190

    Article  Google Scholar 

  59. Sulaiman MH, Mustaffa Z, Saari MM, Daniyal H (2020) Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems. Eng Appl Artif Intell 87. https://doi.org/10.1016/j.engappai.2019.103330

  60. Shahrouzi M, Salehi A (2020) Imperialist competitive learner-based optimization: a hybrid method to solve engineering problems. Int J optim civ eng 10(1):155–180

    Google Scholar 

  61. Xu Z et al (2020) Orthogonally-designed Adapted Grasshopper Optimization: A Comprehensive Analysis. Expert Syst Appl 150:113282. https://doi.org/10.1016/j.eswa.2020.113282

    Article  Google Scholar 

  62. Dhiman G, Garg M, Nagar A, Chahar V, Dehghani M (2021) A novel algorithm for global optimization: rat swarm optimizer. J Ambient Intell Humaniz Comput 12. https://doi.org/10.1007/s12652-020-02580-0 

  63. Askari Q, Younas I, Saeed M (2020) Political Optimizer: A novel socio-inspired meta-heuristic for global optimization. Knowledge-Based Syst. https://doi.org/10.1016/j.knosys.2020.105709

    Article  Google Scholar 

  64. Nandi A, Kamboj VK (2021) A Canis lupus inspired upgraded Harris hawks optimizer for nonlinear, constrained, continuous, and discrete engineering design problem.  Int J Numer Methods Eng 122(4):1051–1088. https://doi.org/10.1002/nme.6573

    Article  MathSciNet  Google Scholar 

  65. Rahkar Farshi T (2021) Battle royale optimization algorithm. Neural Comput Applic 33. https://doi.org/10.1007/s00521-020-05004-4

  66. Kaur S, Awasthi LK, Sangal AL, Dhiman G (2020) Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intell 90:103541. https://doi.org/10.1016/j.engappai.2020.103541

    Article  Google Scholar 

  67. Kaveh A, DadrasEslamlou A (2020) Water strider algorithm: A new metaheuristic and applications. Structures 25:520–541. https://doi.org/10.1016/j.istruc.2020.03.033

    Article  Google Scholar 

  68. Debnath S, Arif W, Baishya S (2020) Buyer inspired meta-heuristic optimization algorithm. Open Comput Sci 10(1):194–219. https://doi.org/10.1515/comp-2020-0101

    Article  Google Scholar 

  69. Chou JS, Nguyen NM (2020) FBI inspired meta-optimization. Appl Soft Comput J 93:106339. https://doi.org/10.1016/j.asoc.2020.106339

    Article  Google Scholar 

  70. Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst Appl 152:113377. https://doi.org/10.1016/j.eswa.2020.113377

    Article  Google Scholar 

  71. Ahmadianfar I, Bozorg-Haddad O, Chu X (2020) Gradient-based optimizer: A new metaheuristic optimization algorithm. Inf Sci (Ny) 540:131–159. https://doi.org/10.1016/j.ins.2020.06.037

    Article  MathSciNet  Google Scholar 

  72. Abualigah L (2021) Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. Neural Comput Applic 33(7):2949–2972. https://doi.org/10.1007/s00521-020-05107-y

    Article  Google Scholar 

  73. Talatahari S, Azizi M (2021) Chaos game optimization: a novel metaheuristic algorithm. Artif Intell Rev 54(2):917–1004. https://doi.org/10.1007/s10462-020-09867-w

    Article  Google Scholar 

  74. Harifi S, Mohammadzadeh J, Khalilian M, Ebrahimnejad S (2020) Giza Pyramids Construction: an ancient-inspired metaheuristic algorithm for optimization. Evol Intell 14:1743. https://doi.org/10.1007/s12065-020-00451-3

    Article  Google Scholar 

  75. Kaveh A, Zaerreza A (2020) Shu ffl ed shepherd optimization method : a new Meta-heuristic algorithm. Eng Comp 37(7):2357–2389. https://doi.org/10.1108/EC-10-2019-0481

    Article  Google Scholar 

  76. Chen Z, Liu Y, Yang Z, Fu X, Tan J, Yang X (2021) An enhanced teaching-learning-based optimization algorithm with self-adaptive and learning operators and its search bias towards origin. Swarm Evol Comput 60:100766. https://doi.org/10.1016/j.swevo.2020.100766

    Article  Google Scholar 

  77. Zheng R, Hussien AG, Jia H-M, Abualigah L, Wang S, Wu D (2022) An Improved Wild Horse Optimizer for Solving Optimization Problems. Mathematics 10(8):1311. https://doi.org/10.3390/math10081311

    Article  Google Scholar 

  78. Mahajan S, Abualigah L, Pandit AK, Al Nasar MR, Alkhazaleh HA, Altalhi M (2022) Fusion of modern meta-heuristic optimization methods using arithmetic optimization algorithm for global optimization tasks. Soft Comput 26:6749. https://doi.org/10.1007/s00500-022-07079-8

    Article  Google Scholar 

  79. Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194(36):3902–3933. https://doi.org/10.1016/j.cma.2004.09.007

    Article  ADS  Google Scholar 

  80. Karaboga D, Akay B (2009) A comparative study of Artificial Bee Colony algorithm. Appl Math Comput 214(1):108–132. https://doi.org/10.1016/j.amc.2009.03.090

    Article  MathSciNet  Google Scholar 

  81. Yang X-S, Deb S (2010) Cuckoo search via levey flights. In: 2009 world congress on nature and biologically inspired computing, NABIC 2009 - Proceedings. https://doi.org/10.1109/NABIC.2009.5393690

  82. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization, studies in computational intelligence, vol 284. Springer, Berlin, pp 65–74. https://doi.org/10.1007/978-3-642-12538-6_6

  83. Yang X-S (2010) Firefly algorithm. In: Yang X-S (ed) Engineering optimization. https://doi.org/10.1002/9780470640425.ch17

  84. Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: Artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42(1):2014. https://doi.org/10.1007/s10462-012-9328-0

    Article  Google Scholar 

  85. Gandomi AH, Alavi AH (2012) Krill herd: A new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845. https://doi.org/10.1016/j.cnsns.2012.05.010

    Article  ADS  MathSciNet  Google Scholar 

  86. Yang XS (2012) Flower pollination algorithm for global optimization. Unconventional computation and natural computation. Springer, Berlin Heidelberg, pp 240–249. https://doi.org/10.1007/978-3-642-32894-7_27

    Chapter  Google Scholar 

  87. Satapathy SC, Naik A, Parvathi K (2013) A teaching learning based optimization based on orthogonal design for solving global optimization problems. Springer Plus 2(1):130. https://doi.org/10.1186/2193-1801-2-130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  89. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: Theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  90. Lim WL, Wibowo A, Desa MI, Haron H (2016) A biogeography-based optimization algorithm hybridized with Tabu search for the quadratic assignment problem. Comput Intell Neurosci 2016:5803893. https://doi.org/10.1155/2016/5803893

    Article  PubMed  Google Scholar 

  91. Abualigah L, Diabat A, Mirjalili S, AbdElaziz M, Gandom AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376(113609):2021. https://doi.org/10.1016/j.cma.2020.113609

    Article  MathSciNet  Google Scholar 

  92. Bohre A, Agnihotri G, Dubey M (2015) The butterfly-particle swarm optimization (Butterfly-PSO/BF-PSO) technique and its variables. Int J Soft Comp, Math Control 4:23–39. https://doi.org/10.14810/ijscmc.2015.4302

    Article  Google Scholar 

  93. Quan H, Srinivasan D, Khosravi A (2016) Integration of renewable generation uncertainties into stochastic unit commitment considering reserve and risk : A comparative study. Energy 103:735–745. https://doi.org/10.1016/j.energy.2016.03.007

    Article  Google Scholar 

  94. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39. https://doi.org/10.1109/MCI.2006.329691

    Article  Google Scholar 

  95. Abualigah L, Diabat A, Sumari P, Gandomi AH (2021) A Novel Evolutionary Arithmetic Optimization Algorithm for Multilevel Thresholding Segmentation of COVID-19 CT Images

  96. Kamboj VK, Bath SK, Dhillon JS (2017) Hybrid HS–random search algorithm considering ensemble and pitch violation for unit commitment problem. Neural Comput Appl 28(5):1123–1148. https://doi.org/10.1007/s00521-015-2114-6

    Article  Google Scholar 

  97. Maghsudlu S, Mohammadi S (2018) Optimal scheduled unit commitment considering suitable power of electric vehicle and photovoltaic uncertainty. J Renew Sustain Ener 10:043705. https://doi.org/10.1063/1.5009247

    Article  Google Scholar 

  98. Jian X, Yong-Quan Z, Huan C (2013) A bat algorithm based on lévy flights trajectory. Pattern Recognit Artif Intell 26(9):829-837. http://manu46.magtech.com.cn/Jweb_prai/EN/

  99. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073. https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  100. Sadollah A, Eskandar H, Bahreininejad A, Kim JH (2015) Water cycle algorithm with evaporation rate for solving constrained and unconstrained optimization problems. Appl Soft Comput J 30:58–71. https://doi.org/10.1016/j.asoc.2015.01.050

    Article  Google Scholar 

  101. Wang GG, Deb S, Coelho LDS (2016) Elephant Herding Optimization. Proc - 2015 3rd Int Symp Comput Bus Intell ISCBI 2015:1–5. https://doi.org/10.1109/ISCBI.2015.8

    Article  Google Scholar 

  102. Yildiz AR, Mehta P (2022) Manta ray foraging optimization algorithm and hybrid Taguchi salp swarm-Nelder-Mead algorithm for the structural design of engineering components. Mater Test 64(5):706–713. https://doi.org/10.1515/mt-2022-0012

    Article  ADS  Google Scholar 

  103. Wei Y et al (2020) Predicting Entrepreneurial Intention of Students: An Extreme Learning Machine with Gaussian Barebone Harris hawks Optimizer. IEEE Access PP:1–1. https://doi.org/10.1109/access.2020.2982796

    Article  Google Scholar 

  104. Hans R, Kaur H, Kaur N (2020) Opposition-based Harris hawks optimization algorithm for feature selection in breast mass classification. J Interdiscip Math 23(1):97–106. https://doi.org/10.1080/09720502.2020.1721670

    Article  Google Scholar 

  105. Bui DT et al (2019) A Novel Swarm Intelligence -Harris hawks. Sensors 19(16):3590. https://doi.org/10.3390/s19163590

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  106. Attiya I, Abd Elaziz M, **ong S (2020) Job scheduling in cloud computing using a modified harris hawks optimization and simulated annealing algorithm. Comput Intell Neurosci 2020:3504642. https://doi.org/10.1155/2020/3504642

    Article  PubMed  PubMed Central  Google Scholar 

  107. Chen H, Asghar A, Chen H, Wang M, Pan Z, Gandomi AH (2020) Multi-population differential evolution-assisted Harris hawks optimization : Framework and case studies. Futur Gener Comput Syst 111:175–198. https://doi.org/10.1016/j.future.2020.04.008

    Article  Google Scholar 

  108. Jia H, Lang C, Oliva D, Song W, Peng X (2019) Dynamic Harris hawks optimization with mutation mechanism for satellite image segmentation. Remote Sens 11:12. https://doi.org/10.3390/rs11121421

    Article  Google Scholar 

  109. Yıldız AR, Yıldız BS, Sait SM, Bureerat S, Pholdee N (2019) A new hybrid Harris hawks-Nelder-Mead optimization algorithm for solving design and manufacturing problems. Mater Test 61(8):735–743. https://doi.org/10.3139/120.111378

    Article  ADS  Google Scholar 

  110. Yu Z, Shi X, Zhou J, Chen X, Qiu X (2020) Effective assessment of blast-induced ground vibration using an optimized random forest model based on a harris hawks optimization algorithm. Appl Sci 10:4. https://doi.org/10.3390/app10041403

    Article  Google Scholar 

  111. Chen H, Jiao S, Wang M, Heidari AA, Zhao X (2020) Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts. J Clean Prod 244:118778. https://doi.org/10.1016/j.jclepro.2019.118778

    Article  Google Scholar 

  112. Houssein E, Hosney M, Elhoseny M, Oliva D, Makram Mohamed W, Hassaballah M (2020) Hybrid Harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics. Sci Rep 10. https://doi.org/10.1038/s41598-020-71502-z

  113. Zhao J, Gao Z, Sun W (2020) The improved slime mould algorithm with Levy flight. https://doi.org/10.1088/1742-6596/1617/1/012033

  114. Zubaidi SL et al (2020) Hybridised artificial neural network model with slime mould algorithm: A novel methodology for prediction of urban stochastic water demand. Water (Switzerland) 12:10. https://doi.org/10.3390/w12102692

    Article  Google Scholar 

  115. Kumar C, Raj TD, Premkumar M, Raj TD (2020) A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters. Optik (Stuttg). 223:165277. https://doi.org/10.1016/j.ijleo.2020.165277

    Article  ADS  CAS  Google Scholar 

  116. Abdel-Basset M, Chang V, Mohamed R (2020) HSMA_WOA: a hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images. Appl Soft Comput 95:106642. https://doi.org/10.1016/j.asoc.2020.106642

    Article  PubMed  PubMed Central  Google Scholar 

  117. Gao Z-M, Zhao J, Li S-R (2020) The Improved Slime Mould Algorithm with Cosine Controlling Parameters. J Phys Conf Ser 1631:012083. https://doi.org/10.1088/1742-6596/1631/1/012083

    Article  Google Scholar 

  118. Zhao J, Gao Z-M (2020) The chaotic slime mould algorithm with chebyshev map. J Phys Conf Ser 1631:012071. https://doi.org/10.1088/1742-6596/1631/1/012071

    Article  Google Scholar 

  119. Gao Z-M, Zhao J, Yang Y, Tian X-J (2020) The hybrid grey wolf optimization-slime mould algorithm. J Phys Conf Ser  1617:012034. https://doi.org/10.1088/1742-6596/1617/1/012034

    Article  Google Scholar 

  120. Liu M et al (2020) “A two-way parallel slime mold algorithm by flow and distance for the travelling salesman problem. Appl Sci 10:18. https://doi.org/10.3390/APP10186180

    Article  CAS  Google Scholar 

  121. Durmus A (2020) The optimal synthesis of thinned concentric circular antenna arrays using slime mold algorithm. Electromagnetics 40(8):541–553. https://doi.org/10.1080/02726343.2020.1838044

    Article  Google Scholar 

  122. Wolpert DH, Macready WG (1997) No Free Lunch Theorems for Optimization 1 Introduction. IEEE Trans Evol Comput 1(1):67–82. https://doi.org/10.1145/1389095.1389254

    Article  Google Scholar 

  123. Zhou W, Wang P, Heidari AA, Wang M, Chen H (2020) Multi-core Sine Cosine Optimization: Methods and Inclusive Analysis. Expert Syst Appl 164:113974. https://doi.org/10.1016/j.eswa.2020.113974

    Article  Google Scholar 

  124. Howard FL (1931) the Life History of Physarum Polycephalum. Am J Bot 18(2):116–133. https://doi.org/10.1002/j.1537-2197.1931.tb09577.x

    Article  Google Scholar 

  125. Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: A new method for stochastic optimization. Futur Gener Comput Syst 111:300–323. https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  126. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  127. Digalakis JG, Margaritis KG (2001) On benchmarking functions for genetic algorithms. Int J Comput Math 77(4):481–506. https://doi.org/10.1080/00207160108805080

    Article  MathSciNet  Google Scholar 

  128. Kaveh A, IlchiGhazaan M (2014) Enhanced colliding bodies optimization for design problems with continuous and discrete variables. Adv Eng Softw 77:66–75. https://doi.org/10.1016/j.advengsoft.2014.08.003

    Article  Google Scholar 

  129. Dhawale PG, Kamboj VK, Bath SK (2023) A levy flight based strategy to improve the exploitation capability of arithmetic optimization algorithm for engineering global optimization problems. Trans Emerg Telecommun Technol September 2022:1–65. https://doi.org/10.1002/ett.4739

    Article  Google Scholar 

  130. Anand P, Rizwan M, Kaur S, Gulnar B, Vikram P, Kamboj K (2022) Optimal Sizing of Hybrid Renewable Energy System for Electricity Production for Remote Areas. Iran J Sci Technol Trans Electr Eng 46(4):1149–1174. https://doi.org/10.1007/s40998-022-00524-2

    Article  Google Scholar 

  131. Fathy A, Alharbi AG, Alshammari S, Hasanien HM (2021) Archimedes optimization algorithm based maximum power point tracker for wind energy generation system. Ain Shams Eng J 13(2):101548. https://doi.org/10.1016/j.asej.2021.06.032

    Article  Google Scholar 

  132. Dhawale D, Kamboj VK, Anand P (2023) An improved Chaotic Harris Hawks Optimizer for solving numerical and engineering optimization problems. Eng Comput 39(2):1183–1228. https://doi.org/10.1007/s00366-021-01487-4

    Article  Google Scholar 

  133. Mirjalili S, Lewis A (2014) Adaptive gbest-guided gravitational search algorithm. Neural Comput Appl 25(7–8):1569–1584. https://doi.org/10.1007/s00521-014-1640-y

    Article  Google Scholar 

  134. Mirjalili S, Mirjalili S, Hatamlou A (2015) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27. https://doi.org/10.1007/s00521-015-1870-7

  135. Nakamura R, Pereira L, Costa K, Rodrigues D, Papa J, Yang X-S (2012) BBA: a binary bat algorithm for feature selection. In: Brazilian symposium of computer graphic and image processing. https://doi.org/10.1109/SIBGRAPI.2012.47

  136. Zhao J, Gao ZM (2020) The Chaotic Slime Mould Algorithm with Chebyshev Map. J Phys Conf Ser 1631:1. https://doi.org/10.1088/1742-6596/1631/1/012071

    Article  Google Scholar 

  137. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: Algorithm and applications. Futur Gener Comput Syst. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  138. Kamboj VK, Nandi A, Bhadoria A, Sehgal S (2020) An intensify Harris hawks optimizer for numerical and engineering optimization problems. Appl Soft Comput J 89:106018. https://doi.org/10.1016/j.asoc.2019.106018

    Article  Google Scholar 

  139. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm : A new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput J 13(5):2592–2612. https://doi.org/10.1016/j.asoc.2012.11.026

    Article  Google Scholar 

  140. Shankar K, Eswaran P (2016) “RGB-Based Secure Share Creation in Visual Cryptography Using Optimal Elliptic Curve Cryptography Technique. J Circuits Syst Comput 25(11):1650138. https://doi.org/10.1142/S0218126616501383

    Article  Google Scholar 

  141. Mohanty S, Subudhi B, Ray PK (2016) A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions. IEEE Trans Sustain Energy 7(1):181–188. https://doi.org/10.1109/TSTE.2015.2482120

    Article  ADS  Google Scholar 

  142. AbdElaziz M, Oliva D, **ong S (2017) An improved opposition-based sine cosine algorithm for global optimization. Expert Syst Appl 90:484–500. https://doi.org/10.1016/j.eswa.2017.07.043

    Article  Google Scholar 

  143. Kannan BK, Kramer SN (1994) An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des Trans ASME. https://doi.org/10.1115/1.2919393

    Article  Google Scholar 

  144. Hameed IA, Bye RT, Osen OL (2016) Grey wolf optimizer (GWO) for automated offshore crane design. 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp 1–6. https://doi.org/10.1109/SSCI.2016.7849998

  145. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232

    Article  Google Scholar 

  146. Karthikeyan P, Raglend J, Kothari DP (2013) A review on market power in deregulated electricity market. Int J Electr Power Energy Syst 48:139–147. https://doi.org/10.1016/j.ijepes.2012.11.024

    Article  Google Scholar 

  147. Cagnina LC, Esquivel SC, Nacional U, Luis DS, Luis S, Coello CAC (2008) Solving Engineering Optimization Problems with the Simple Constrained Particle Swarm Optimizer 1 Introduction 2 Literature review 3 Our proposed approach. SiC-PSO 32:319–326

    Google Scholar 

  148. Virmani S, Adrian EC, Imhof K, Mukherjee S (1989) Implementation of a Lagrangian relaxation based unit commitment problem. IEEE Trans Power Syst 4(4):1373–1380. https://doi.org/10.1109/59.41687

    Article  ADS  Google Scholar 

  149. Cohen AI, Yoshimura M (1983) A Branch-and-Bound Algorithm for Unit Commitment. IEEE Trans Power Appar Syst 102(2):444–451

    Article  ADS  Google Scholar 

  150. Dhiman G, Kumar V (2017) Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70. https://doi.org/10.1016/j.advengsoft.2017.05.014

    Article  Google Scholar 

  151. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166. https://doi.org/10.1016/j.compstruc.2012.07.010

    Article  Google Scholar 

  152. Pelusi D, Mascella R, Tallini L, Nayak J, Naik B, Deng Y (2020) An Improved Moth-Flame Optimization algorithm with hybrid search phase. Knowledge-Based Syst. 191:105277. https://doi.org/10.1016/j.knosys.2019.105277

    Article  Google Scholar 

  153. Zolghadr-Asli B, Bozorg-Haddad O, Chu X (2018) “Crow search algorithm (CSA)”, Studies in Computational. Intelligence. https://doi.org/10.1007/978-981-10-5221-7_14

    Article  Google Scholar 

  154. Gandomi AH (2014) Interior search algorithm (ISA): A novel approach for global optimization. ISA Trans 53(4):1168–1183. https://doi.org/10.1016/j.isatra.2014.03.018

    Article  PubMed  Google Scholar 

  155. Coello CA, Christiansen AD (1999) Moses: A multiobjective optimization tool for engineering design. Eng Optim 31(1–3):337–368. https://doi.org/10.1080/03052159908941377

    Article  Google Scholar 

  156. Cheng MY, Prayogo D (2014) Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Comput Struct 139:98–112. https://doi.org/10.1016/j.compstruc.2014.03.007

    Article  Google Scholar 

  157. Hussien AG, Hassanien AE, Houssein EH, Azar AT (2019) New binary whale optimization algorithm for discrete optimization problems. Eng Optim 0(0):1–15. https://doi.org/10.1080/0305215X.2019.1624740

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Kumar Kamboj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sehgal, S., Ganesh, A., Kamboj, V.K. et al. A Memetic Approach to Multi-Disciplinary Design and Numerical Optimization Problems using Intensify Slime Mould Optimizer. Appl Intell 54, 2031–2083 (2024). https://doi.org/10.1007/s10489-023-05073-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-05073-7

Keywords

Navigation