Log in

Deep deterministic policy gradient and graph attention network for geometry optimization of latticed shells

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper proposes a combined approach of deep deterministic policy gradient (DDPG) and graph attention network (GAT) to the geometry optimization of latticed shells with surface shapes defined by a Bézier control net. The optimization problem is formulated to minimize the strain energy of the latticed structures with heights of the Bézier control points as design variables. The information of the latticed shells, including nodal configurations, element properties and internal forces, and the Bézier control net, consisting of control points and control net, are represented as graphs using node feature matrices, adjacency matrices, and weighted adjacency matrices. A specifically designed DDPG agent utilizes GAT and matrix manipulations to observe the state of the structure through the graphs, and decides which and how Bézier control points to move. The agent is trained to excel in the task through a reward signal computed from changes in the strain energy in each optimization step. As shown in numerical examples, the trained agent can effectively optimize structures of different sizes, control nets, configurations, and initial geometries from those used during the training. The performance of the trained agent is competitive compared to particle swarm optimization and simulated annealing despite using a lower computational cost.

Highlights

- A method using a reinforcement learning agent is proposed to optimize the geometry of latticed structures.

- The agent is designed to observe the structure and Bézier control net and modify the Bézier control net.

- The method yields good results using fewer computations when compared to other conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Experiment data from this study are accessible to corresponding authors upon request.

References

  1. Christensen PW, Klarbring A (2010) An introduction to structural optimization. Springer, Netherlands, pp 1–8

    Google Scholar 

  2. Ohsaki M, Swan CC (2002) Topology and geometry optimization of trusses and frames. In: Scott AB (ed) Recent advances in optimal structural design. American Society of Civil Engineers, Virginia, pp 97–123

  3. Ohsaki M (2010) Optimization of finite dimensional structures. CRC Press, Boca Raton, pp 259–313. https://doi.org/10.1201/EBK1439820032

  4. Top** BH (1983) Shape optimization of skeletal structures: a review. J Struct Eng 109(8):1933–1951. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:8(1933)

    Article  Google Scholar 

  5. Wang D, Zhang WH, Jiang JS (2002) Truss shape optimization with multiple displacement constraints. Comput Methods Appl Mech Eng 191:3597–3361. https://doi.org/10.1016/S0045-7825(02)00297-9

    Article  MATH  Google Scholar 

  6. Kociecki M, Adeli H (2015) Shape optimization of free-form steel space-frame roof structures with complex geometries using evolutionary computing. Eng Appl Artif Intell 38:168–182. https://doi.org/10.1016/j.engappai.2014.10.012

    Article  Google Scholar 

  7. Choi KK, Kim NH (2005) Structural sensitivity analysis and optimization 1: linear systems. Springer, New York, pp 119–170

    Google Scholar 

  8. Adelman H, Haftka R (1986) Sensitivity analysis of discrete structural systems. Am Inst Aeronaut Astronaut J 24:823–832. https://doi.org/10.2514/3.48671

    Article  Google Scholar 

  9. Kirsch U (1994) Efficient sensitivity analysis for structural optimization. Comput Methods Appl Mech Eng 117:143–156. https://doi.org/10.1016/0045-7825(94)90080-9

    Article  MATH  Google Scholar 

  10. Putresza J, Kolakowski P (1998) Sensitivity analysis of frame structures (virtual distortion method approach). Int J Numer Methods Eng 43:1085–1108. https://doi.org/10.1002/1097-0207(20010228)50:6%3C1307::AID-NME38%3E3.0.CO;2-Q

    Article  MATH  Google Scholar 

  11. Jenkins WM (1992) Plane frame optimum design environment based on genetic algorithm. J Struct Eng 118:3103–3112. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3103)

    Article  Google Scholar 

  12. Raich A, Ghaboussi J (2000) Evolving structural design solutions using an implicit redundant genetic algorithm. Struct Multidiscip Optim 20:222–231. https://doi.org/10.1007/s001580050150

    Article  Google Scholar 

  13. Kaveh A, Rahami H (2006) Analysis, design and optimization of structures using force method and genetic algorithm. Int J Numer Methods Eng 65(10):1570–1584. https://doi.org/10.1002/nme.1506

    Article  MATH  Google Scholar 

  14. Kimura T, Ohmori H (2008) Computational morphogenesis of free form shells. J Int Assoc Shell Spat Struct 49(3):175–180

    Google Scholar 

  15. Vu-Bac N, Duong TX, Lahmer T, Zhuang X, Sauer RA, Parke HS, Rabczuk T (2018) A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures. Comput Methods Appl Mech Eng 331:427–455. https://doi.org/10.1016/j.cma.2017.09.034

    Article  MathSciNet  MATH  Google Scholar 

  16. Bernstein S (1912) Démonstration du théorème de weierstrass fondée sur le calcul des probabilités. Comm Soc Math Kharkow 13:1–2

    MATH  Google Scholar 

  17. Ramm E, Bletzinger KU, Reitinger R (1993) Shape optimization of shell structures. Revue Européenne des Éléments Finis 2(3):377–398. https://doi.org/10.1080/12506559.1993.10511083

    Article  MATH  Google Scholar 

  18. Roulier JA, Rondo T (1994) Measures of fairness for curves and surfaces. In: Spadis NS (ed) Designing fair curves and surfaces. SIAM, pp 75–122. https://doi.org/10.1137/1.9781611971521.ch5

    Chapter  Google Scholar 

  19. Ohsaki M, Nakamura T, Kohiyama M (1997) Shape optimization of a double-layer space truss described by a parametric surface. Int J Space Struct 12:109–119. https://doi.org/10.1177/026635119701200205

    Article  Google Scholar 

  20. Ohsaki M, Hayashi M (2000) Fairness metrics for shape optimization of ribbed shells. J Int Assoc Shell Spat Struct 41(1):31–39

    Google Scholar 

  21. Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psycol Rev 65(6):386–408. https://doi.org/10.1037/h0042519

    Article  Google Scholar 

  22. Ivakhnenko AG (1968) The group method of data handling – a rival of the of stochastic approximation. Sov Autom Control 13(3):43–55

    Google Scholar 

  23. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Massachusetts, pp 163–220

    MATH  Google Scholar 

  24. Vanluchene RD, Sun R (1990) Neural networks in structural engineering. Comput-Aided Civil Infrastruct Eng 5(3):207–215. https://doi.org/10.1111/j.1467-8667.1990.tb00377.x

    Article  Google Scholar 

  25. Berke L, Hajela P (1993) Application of neural nets in structural optimization. In: Rozvany GIN (ed) Optimization of large structural systems. NATO ASI series vol 231, pp 731–745. https://doi.org/10.1007/978-94-010-9577-8_36

    Chapter  Google Scholar 

  26. Mai TH, Kang J, Lee J (2021) A machine learning-based surrogate model for optimization of truss structures with geometrically nonlinear behavior. Finite Elem Anal Des 196:103572. https://doi.org/10.1016/j.finel.2021.103572

    Article  MathSciNet  Google Scholar 

  27. Christian MC (2022) Machine learning in structural design: an opinionated review. Front Built Environ 8:815717. https://doi.org/10.3389/fbuil.2022.815717

    Article  Google Scholar 

  28. Mirra G, Pugnale A (2021) Comparison between human-defined and ai-generated design spaces for the optimisation of shell structures. Structures 34:2950–2961. https://doi.org/10.1016/j.istruc.2021.09.058

    Article  Google Scholar 

  29. Kingma PD, Welling M (2019) An introduction to variational autoencoders. Found Trends Mach Learn 12(4):307–392. https://doi.org/10.1561/2200000056

    Article  MATH  Google Scholar 

  30. Samaniego EP, Anitescu C, Goswami S, Nguyen-Thanh VM, Guo H, Hamdia KM, Rabczuk T, Zhuang X (2020) An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Comput Methods Appl Mech Eng 362:112790. https://doi.org/10.1016/j.cma.2019.112790

    Article  MathSciNet  MATH  Google Scholar 

  31. Zheng H, Moosavi V, Akbarzadeh M (2020) Machine learning assisted evaluations in structural design and construction. Autom Constr 119:103346. https://doi.org/10.1016/j.autcon.2020.103346

    Article  Google Scholar 

  32. Fuhrimann L, Moosavi V, Ohlbrock P O, D’acunto P (2018) Data-driven design: exploring new structural forms using machine learning and graphic statics. In: Proceedings of international association for shell and spatial structures, pp. 1–8

  33. **e Y, Li S, Wu CT, Lyu D, Wang C, Zeng D (2022) A generalized Bayesian regularization network approach on characterization of geometric defects in lattice structures for topology optimization in preliminary design of 3D printing. Comput Mech 69:1191–1212. https://doi.org/10.1007/s00466-021-02137-8

    Article  MathSciNet  MATH  Google Scholar 

  34. Lillicrap T P, Hunt J J, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2016) Continuous control with deep reinforcement learning. In: International conference on learning representations (poster)

  35. Kupwiwat C, Yamamoto K (2021) Fundamental study on morphogenesis of shell structure using reinforcement. J Struct Eng B Archit Inst Jpn 67B:211–218

    Google Scholar 

  36. Hayashi K, Ohsaki M (2021) Reinforcement learning and graph embedding for binary truss topology optimization under stress and displacement constraints. Front Built Environ 6:59. https://doi.org/10.3389/fbuil.2020.00059

    Article  Google Scholar 

  37. Zhu S, Ohsaki M, Hayashi K, Guo X (2021) Machine-specified ground structures for topology optimization of binary trusses using graph embedding policy network. Adv Eng Softw 159:103032. https://doi.org/10.1016/j.advengsoft.2021.103032

    Article  Google Scholar 

  38. Kupwiwat C, Hayashi K, Ohsaki M (2022) Deep deterministic policy gradient and graph convolutional network for bracing direction optimization of grid shells. Front Built Environ 8:899072. https://doi.org/10.3389/fbuil.2022.899072

    Article  Google Scholar 

  39. Gilmer J, Schoenholz S, Riley P, Vinyals O, Dahl G (2017) Neural message passing for quantum chemistry. In: Proceedings of international conference on machine learning, vol 70, pp. 1263–1272

  40. Kipf T N, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: Proceedings of international conference on learning representations, pp. 1–14

  41. Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) Graph attention networks. In: Proceedings of international conference on learning representations, pp. 1–12

  42. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L, Polosukhin I (2017) Attention is all you need. In: Proceedings of advances in neural information processing systems, pp. 5998–6008

  43. Yu Z, Wang H, Liu Y, Böhm C, Shao J (2020) Community attention network for semi-supervised node classification. Proc IEEE Int Conf Data Mining 17(20):1382–1387. https://doi.org/10.1109/ICDM50108.2020.00181

    Article  Google Scholar 

  44. Huang J, Shen H, Hou L, Cheng X (2019) Signed graph attention networks. Proc Int Conf Artif Neural Netw 28:566–577. https://doi.org/10.1007/978-3-030-30493-5_53

    Article  Google Scholar 

  45. Gao J, Gao J, Ying X, Lu M, Wang J (2021) Higher-order interaction goes neural: a substructure assembling graph attention network for graph classification. IEEE Trans Knowl Data Eng 35(2):1594–1608. https://doi.org/10.1109/TKDE.2021.3105544

    Article  Google Scholar 

  46. Sutton RS, Andrew GB (2018) Reinforcement learning, an introduction. MIT Press, Massachusetts, pp 1–22. https://doi.org/10.1109/TNN.1998.712192

    Book  MATH  Google Scholar 

  47. Bellman R (1957) A markovian decision process. Indiana Univ Math J 6(4):679–684. https://doi.org/10.1512/iumj.1957.6.56038

    Article  MathSciNet  MATH  Google Scholar 

  48. Bellman R (1954) The theory of dynamic programming. Bull Am Math Soc 60:503–515. https://doi.org/10.1090/S0002-9904-1954-09848-8

    Article  MathSciNet  MATH  Google Scholar 

  49. Haarnoja T, Zhou A, Abbeel P, Levine S (2018) Soft actor-critic: off policy maximum entropy deep reinforcement learning with a stochastic actor. In: Proceedings of international conference on machine learning, pp 1861-1870

  50. Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Stat 22(3):400–407. https://doi.org/10.1214/aoms/1177729586

    Article  MathSciNet  MATH  Google Scholar 

  51. Kiefer J, Wolfowitz J (1952) Stochastic estimation of the maximum of a regression function. Ann Math Stat 23(3):462–466. https://doi.org/10.1214/aoms/1177729392

    Article  MathSciNet  MATH  Google Scholar 

  52. Kingma D, Ba J (2015) Adam: a method for stochastic optimization. In: Proceedings of international conference on learning representations, pp. 1–15

  53. Uhlenbeck GE, Ornstein LS (1930) On the theory of the brownian motion. Phys Rev 36(5):823–841. https://doi.org/10.1103/PhysRev.36.823

    Article  MATH  Google Scholar 

  54. Maas A, Hannun A, Ng A (2013) Rectifier nonlinearities improve neural network acoustic models. In: proceedings of international conference on machine learning, vol 30(1), pp 3

  55. Nair V, Hinton G E (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of international conference on machine learning, pp. 807–814

  56. Aich S, Stavness I (2019) Global sum pooling: a generalization trick for object counting with small datasets of large images. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 73–82

  57. Fortin FA, De Rainville FM, Gardner MA, Parizeau M, Gagné C (2012) DEAP: evolutionary algorithms made easy. J Mach Learn Res 13(1):2171–2175. https://doi.org/10.5555/2503308.2503311

    Article  MathSciNet  Google Scholar 

  58. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization: an overview. Swarm Intell 1:33–57. https://doi.org/10.1007/s11721-007-0002-0

    Article  Google Scholar 

  59. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17:261–272. https://doi.org/10.1038/s41592-019-0686-2

    Article  Google Scholar 

Download references

Acknowledgments

Japan ministry of education, culture, sports, science, and technology (MEXT) scholarship [grant number 180136] and Japan society for the promotion of science (JSPS) KAKENHI [grant numbers JP 20H04467, JP 21 K20461] helped fund this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-tathon Kupwiwat.

Ethics declarations

Competing interests

The authors declare that they have no known competing interests or personal relationships that could have influenced the work reported in this research paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupwiwat, Ct., Hayashi, K. & Ohsaki, M. Deep deterministic policy gradient and graph attention network for geometry optimization of latticed shells. Appl Intell 53, 19809–19826 (2023). https://doi.org/10.1007/s10489-023-04565-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-04565-w

Keywords

Navigation