Log in

Enhanced entropy generation and heat transfer characteristics of magnetic nano-encapsulated phase change materials in latent heat thermal energy storage systems

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The objective of the current study is to investigate the importance of entropy generation and thermal radiation on the patterns of velocity, isentropic lines, and temperature contours within a thermal energy storage device filled with magnetic nano-encapsulated phase change materials (NEPCMs). The versatile finite element method (FEM) is implemented to numerically solve the governing equations. The effects of various parameters, including the viscosity parameter, ranging from 1 to 3, the thermal conductivity parameter, ranging from 1 to 3, the Rayleigh parameter, ranging from 102 to 3 × 102, the radiation number, ranging from 0.1 to 0.5, the fusion temperature, ranging from 1.0 to 1.2, the volume fraction of NEPCMs, ranging from 2% to 6%, the Stefan number, ranging from 1 to 5, the magnetic number, ranging from 0.1 to 0.5, and the irreversibility parameter, ranging from 0.1 to 0.5, are examined in detail on the temperature contours, isentropic lines, heat capacity ratio, and velocity fields. Furthermore, the heat transfer rates at both the cold and hot walls are analyzed, and the findings are presented graphically. The results indicate that the time taken by the NEPCMs to transition from solid to liquid is prolonged inside the chamber region as the fusion temperature θf increases. Additionally, the contours of the heat capacity ratio Cr decrease with the increase in the Stefan number Ste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHAMKHA, A. J., ARMAGHANI, T., MANSOUR, M. A., RASHAD, A. M., and KARGAR-SHARIFABAD, H. MHD convection of an Al2O3-Cu/water hybrid nanofluid in an inclined porous cavity with internal heat generation/absorption. Iranian Journal of Chemistry and Chemical Engineering, 41(30), 936–956 (2021)

    Google Scholar 

  2. CHAMKHA, A., ABDELRAHMAN, Z., MANSOUR, M., ARMAGHANI, T., and RASHAD, A. M. Effects of magnetic field inclination and internal heat sources on nanofluid heat transfer and entropy generation in a double lid driven L-shaped cavity. Thermal Science, 25(2), 1033–1046 (2021)

    Article  Google Scholar 

  3. GHALAMBAZ, M., HASHEM ZADEH, S. M., VEISMORADI, A., SHEREMET, M. A., and POP, I. Free convection heat transfer and entropy generation in an odd-shaped cavity filled with a Cu-Al2O3 hybrid nanofluid. Symmetry, 13(1), 122 (2021)

    Article  Google Scholar 

  4. ALSABERY, A. I., HASHIM, I., HAJJAR, A., GHALAMBAZ, M., NADEEM, S., and SAFFARI POUR, M. Entropy generation and natural convection flow of hybrid nanofluids in a partially divided wavy cavity including solid blocks. Energies, 13(11), 2942 (2020)

    Article  Google Scholar 

  5. SREEDEVI, P. and SUDARSANA REDDY, P. Impact of convective boundary condition on heat and mass transfer of nanofluid flow over a thin needle filled with carbon nanotubes. Journal of Nanofluids, 9(4), 282–292 (2020)

    Article  Google Scholar 

  6. SREEDEVI, P. and SUDARSANA REDDY, P. Combined influence of Brownian motion and thermophoresis on Maxwell three-dimensional nanofluid flow over stretching sheet with chemical reaction and thermal radiation. Journal of Porous Media, 23(4), 327–340 (2020)

    Article  Google Scholar 

  7. SHEREMET, M., POP, I., ÖZTOP, H. F., and ABU-HAMDEH, N. Natural convection of nanofluid inside a wavy cavity with a non-uniform heating. International Journal of Numerical Methods for Heat and Fluid Flow, 27(4), 958–980 (2017)

    Article  Google Scholar 

  8. SHEREMET, M. A. and ÖZTOP, H. F. Impact of porous complicated fin and sinusoidal-heated wall on thermogravitational convection of different nanofluids in a square domain. International Journal of Thermal Sciences, 168, 107053 (2021)

    Article  Google Scholar 

  9. NAZIA, S., SESHAIAH, B., SUDARSANA REDDY, P., and SREEDEVI, P. Silver-ethylene glycol and copper-ethylene glycol based thermally radiative nanofluid characteristics between two rotating stretchable disks with modified Fourier heat flux. Heat Transfer, 52(1), 289–316 (2022)

    Article  Google Scholar 

  10. SUDARSANA REDDY, P. and CHAMKHA, A. Heat and mass transfer analysis in natural convection flow of nanofluid over a vertical cone with chemical reaction. International Journal of Numerical Methods for Heat and Fluid Flow, 27(1), 2–22 (2017)

    Article  Google Scholar 

  11. HASHEMI-TILEHNOEE, M., DOGONCHI, A. S., SEYYEDI, S. M., and SHARIFPUR, M. Magneto-fluid dynamic and second law analysis in a hot porous cavity filled by nanofluid and nano-encapsulated phase change material suspension with different layout of cooling channels. Journal of Energy Storage, 31, 101720 (2020)

    Article  Google Scholar 

  12. WANG, T. H., YANG, T. F., KAO, C. H., YAN, W. M., and GHALAMBAZ, M. Paraffin core-polymer shell micro-encapsulated phase change materials and expanded graphite particles as an enhanced energy storage medium in heat exchangers. Advanced Powder Technology, 31(6), 2421–2429 (2020)

    Article  Google Scholar 

  13. ALY, A. M., RAIZAH, Z., and AL-HANAYA, A. Double rotations between an inner wavy shape and a hexagonal-shaped cavity suspended by NEPCM using a time-fractional derivative of the ISPH method. International Communications in Heat and Mass Transfer, 127, 105533 (2021)

    Article  Google Scholar 

  14. SHAH, Z., HAJIZADEH, M. R., IKRAMULLAH, ALRESHIDI, N. A., DEEBANI, W., and SHUTAYWI, M. Entropy optimization and heat transfer modeling for Lorentz forces effect on solidification of NEPCM. International Communications in Heat and Mass Transfer, 117, 104715 (2020)

    Article  Google Scholar 

  15. LAOUER, A., ARICI, M., TEGGAR, M., BOUABDALLAH, S., YILDIZ, Ç., ISMAIL, K. A. R., AJAROSTAGHI, S. S. M., and MEZAACHE, E. H. Effect of magnetic field and nanoparticle concentration on melting of Cu-ice in a rectangular cavity under fluctuating temperatures. Journal of Energy Storage, 36, 102421 (2021)

    Article  Google Scholar 

  16. ABU-HAMDEH, N. H., ABUSORRAH, A. M., BAYOUMI, M. M., OZTOP, H. F., and SUN, C. Numerical study on heat loss from the surface of solar collector tube filled by oil-NE-PCM/Al2O3 in the presence of the magnetic field. Journal of Thermal Analysis and Calorimetry, 144, 2627–2639 (2021)

    Article  Google Scholar 

  17. KHODADADI, M., ALI FARSHAD, S., EBRAHIMPOUR, Z., and SHEIKHOLESLAMI, M. Thermal performance of nanofluid with employing of NEPCM in a PVT-LFR system. Sustainable Energy Technologies and Assessments, 47, 101340 (2021)

    Article  Google Scholar 

  18. AHMED, S. E. and RAIZAH, Z. A. S. Analysis of the entropy due to radiative flow of nano-encapsulated phase change materials within inclined porous prismatic enclosures: finite element simulation. Journal of Energy Storage, 40, 102719 (2021)

    Article  Google Scholar 

  19. KHODADADI, M. and SHEIKHOLESLAMI, M. Heat transfer efficiency and electrical performance evaluation of photovoltaic unit under influence of NEPCM. International Journal of Heat and Mass Transfer, 183, 122232 (2022)

    Article  Google Scholar 

  20. DHAIDAN, N. S., KOKZ, S. A., RASHID, F. L., HUSSEIN, A. K., YOUNIS, O., and AL-MOUSAWI, F. N. Review of solidification of phase change materials dispersed with nanoparticles in different containers. Journal of Energy Storage, 51, 104271 (2022)

    Article  Google Scholar 

  21. ABDERRAHMANE, A., YOUNIS, O., AL-KHALEEL, M., LAIDOUDI, H., AKKURT, N., GUEDRI, K., and MARZOUKI, R. 2D MHD mixed convection in a zigzag trapezoidal thermal energy storage system using NEPCM. Nanomaterials, 12(19), 3270 (2022)

    Article  Google Scholar 

  22. ALHEJAILI, W. and ALY, A. M. Thermal radiation impacts on natural convection of NEPCM in a porous annulus between two horizontal wavy cavities. Case Studies in Thermal Engineering, 40, 102526 (2022)

    Article  Google Scholar 

  23. ALY, A. M., RAIZAH, Z., EL-SAPA, S., OZTOP, H. F., and ABU-HAMDEH, N. Thermal diffusion upon magnetic field convection of nano-enhanced phase change materials in a permeable wavy cavity with crescent-shaped partitions. Case Studies in Thermal Engineering, 31, 101855 (2022)

    Article  Google Scholar 

  24. ALY, A. M. and ALHEJAILI, W. Effects of thermal radiation on natural convection in two connected circular cylinders suspended by NEPCM and porous media. Numerical Heat Transfer, Part A: Applications, 82(8), 469–481 (2022)

    Article  Google Scholar 

  25. SHARMA, H. K., KUMAR, S., KUMAR, S., and VERMA, S. K. Performance investigation of flat plate solar collector with nanoparticle enhanced integrated thermal energy storage system. Journal of Energy Storage, 55, 105681 (2022)

    Article  Google Scholar 

  26. GHALAMBAZ, M., CHAMKHA, A. J., and WEN, D. Natural convective flow and heat transfer of nano-encapsulated phase change materials (NEPCMs) in a cavity. International Journal of Heat and Mass Transfer, 138, 738–749 (2019)

    Article  Google Scholar 

  27. ZHUANG, Y., LI, H., XU, W., and HUANG, S. M. Experimental study on the melting performance of magnetic NEPCMs embedded in metal foam subjected to a non-uniform magnetic field. Solar Energy Materials and Solar Cells, 250, 112077 (2023)

    Article  Google Scholar 

  28. AYOUBI AYOUBLOO, K., BAZGIRKHOOB, H., ASAREH, M., NOGHREHABADI, A., and MOOSAVI, R. Magnetic force impact on melting behavior of dilatant non-Newtonian phase change materials using a numerical approach. Alexandria Engineering Journal, 66, 505–522 (2023)

    Article  Google Scholar 

  29. GHALAMBAZ, M., MEHRYAN, S. A. M., MOZAFFARI, M., HAJJAR, A., EL KADRI, M., RACHEDI, N., SHEREMET, M., YOUNIS, O., and NADEEM, S. Entropy generation and natural convection flow of a suspension containing nano-encapsulated phase change particles in a semiannular cavity. Journal of Energy Storage, 32, 101834 (2020)

    Article  Google Scholar 

  30. SHAFEE, A., JAFARYAR, M., ALGHAMDI, M., and TLILI, I. Entropy generation for spiral heat exchanger with considering NEPCM charging process using hybrid nanomaterial. The European Physical Journal Plus, 135(3), 285 (2020)

    Article  Google Scholar 

  31. HASHEMI-TILEHNOEE, M., DOGONCHI, A. S., SEYYEDI, S. M., and SHARIFPUR, M. Magneto-fluid dynamic and second law analysis in a hot porous cavity filled by nanofluid and nano-encapsulated phase change material suspension with different layout of cooling channels. Journal of Energy Storage, 31, 101720 (2020)

    Article  Google Scholar 

  32. XIONG, Q., TLILI, I., DARA, R. N., SHAFEE, A., NGUYEN-THOI, T., REBEY, A., HAQ, R., and LI, Z. Energy storage simulation involving NEPCM solidification in appearance of fins. Physica A: Statistical Mechanics and Its Applications, 544, 123566 (2020)

    Article  MathSciNet  Google Scholar 

  33. HASHEM ZADEH, S. M., MEHRYAN, S. A. M., ISLAM, M. S., and GHALAMBAZ, M. Irreversibility analysis of thermally driven flow of a water-based suspension with dispersed nano-sized capsules of phase change material. International Journal of Heat and Mass Transfer, 155, 119796 (2020)

    Article  Google Scholar 

  34. AFSHAR, S. R., MISHRA, S. R., DOGONCHI, A. S., KARIMI, N., CHAMKHA, A. J., and ABULKHAIR, H. Dissection of entropy production for the free convection of NEPCMs-filled porous wavy enclosure subject to volumetric heat source/sink. Journal of the Taiwan Institute of Chemical Engineers, 128, 98–113 (2021)

    Article  Google Scholar 

  35. NAYAK, M. K., DOGONCHI, A. S., ELMASRY, Y., KARIMI, N., CHAMKHA, A. J., and ALHUMADE, H. Free convection and second law scrutiny of NEPCM suspension inside a wavy-baffle-equipped cylinder under altered Fourier theory. Journal of the Taiwan Institute of Chemical Engineers, 128, 288–300 (2021)

    Article  Google Scholar 

  36. SEYYEDI, S. M., HASHEMI-TILEHNOEE, M., and SHARIFPUR, M. Effect of inclined magnetic field on the entropy generation in an annulus filled with NEPCM suspension. Mathematical Problems in Engineering, 2021, 8103300 (2021)

    Article  Google Scholar 

  37. DOSHI, S., KASHYAP, G., and TIWARI, N. Thermo-hydraulic and entropy generation investigation of nano-encapsulated phase change material (NEPCM) slurry in hybrid wavy microchannel. International Journal of Numerical Methods for Heat and Fluid Flow, 32(10), 3161–3190 (2022)

    Article  Google Scholar 

  38. SADEGHI, M. S., CHAMKHA, A. J., ALI, R., BEN HAMIDA, M. B., GHODRAT, M., and GALAL, A. M. Hydrothermal behavior of micro-polar nano-encapsulated phase change materials (NEPCMs) in an inclined L-shaped cavity. Case Studies in Thermal Engineering, 35, 102039 (2022)

    Article  Google Scholar 

  39. ROTHAN, Y. A. Unsteady heat transfer of NEPCM during freezing in a channel. The European Physical Journal Plus, 136(6), 660 (2021)

    Article  Google Scholar 

  40. MANSOUR, M. A., SIDDIQA, S., GORLA, R. S. R., and RASHAD, A. M. Effects of heat source and sink on entropy generation and MHD natural convection of Al2O3-Cu/water hybrid nanofluid filled with square porous cavity. Thermal Science and Engineering Progress, 6, 57–71 (2018)

    Article  Google Scholar 

  41. ARMAGHANI, T., RASHAD, A. M., VAHIDIFAR, O., MISHRA, S. R., and CHAMKHA, A. J. Effects of discrete heat source location on heat transfer and entropy generation of nanofluid in an open inclined L-shaped cavity. International Journal of Numerical Methods for Heat and Fluid Flow, 29(4), 1363–1377 (2019)

    Article  Google Scholar 

  42. ABDEL-NOUR, Z., AISSA, A., MEBAREK-OUDINA, F., RASHAD, A. M., ALI, H. M., SAH-NOUN, M., and EL GANAOUI, M. Magnetohydrodynamic natural convection of hybrid nanofluid in a porous enclosure: numerical analysis of the entropy generation. Journal of Thermal Analysis and Calorimetry, 141(5), 1981–1992 (2020)

    Article  Google Scholar 

  43. REDDY, P. B. A., SALAH, T., JAKEER, S., MANSOUR, M. A., and RASHAD, A. M. Entropy generation due to magneto-natural convection in a square enclosure with heated corners saturated porous medium using Cu/water nanofluid. Chinese Journal of Physics, 77, 1863–1884 (2022)

    Article  MathSciNet  Google Scholar 

  44. KAHVECI, K. Buoyancy driven heat transfer of nanofluids in a tilted enclosure. Journal of Heat and Mass Transfer, 132, 062501 (2010)

    Google Scholar 

  45. SALIH, S. M., ALSABERY, A. I., HUSSEIN, A. K., ISMAEL, M. A., GHALAMBAZ, M., and HASHIM, I. Melting control of phase change material of semi-cylinders inside a horizontal baffled channel: convective laminar fluid-structure interaction. Journal of Energy Storage, 58, 106312 (2023)

    Article  Google Scholar 

  46. REDDY, P. S. and CHAMKHA, A. J. Soret and Dufour effects on unsteady MHD heat and mass transfer from a permeable stretching sheet with thermophoresis and non-uniform heat generation/absorption. Journal of Applied Fluid Mechanics, 9(7), 2443–2455 (2016)

    Article  Google Scholar 

  47. SREEDEVI, P., SUDARSANA REDDY, P., and CHAMKHA, A. J. Heat and mass transfer analysis of nanofluid over linear and non-linear stretching surfaces with thermal radiation and chemical reaction. Powder Technology, 315, 194–204 (2017)

    Article  Google Scholar 

  48. SUDARSANA REDDY, P., CHAMKHA, A. J., and AL-MUDHAF, A. MHD heat and mass transfer flow of a nanofluid over an inclined vertical porous plate with radiation and heat generation/absorption. Advanced Powder Technology, 28(3), 1008–1017 (2017)

    Article  Google Scholar 

  49. SUDARSANA REDDY, P., JYOTHI, K., and SURYANARAYANA REDDY, M. Flow and heat transfer analysis of carbon nanotubes-based Maxwell nanofluid flow driven by rotating stretchable disks with thermal radiation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(12), 576 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Reddy.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Citation: REDDY, P. S. and SREEDEVI, P. Enhanced entropy generation and heat transfer characteristics of magnetic nano-encapsulated phase change materials in latent heat thermal energy storage systems. Applied Mathematics and Mechanics (English Edition), 45(6), 1051–1070 (2024) https://doi.org/10.1007/s10483-024-3126-9

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, P.S., Sreedevi, P. Enhanced entropy generation and heat transfer characteristics of magnetic nano-encapsulated phase change materials in latent heat thermal energy storage systems. Appl. Math. Mech.-Engl. Ed. 45, 1051–1070 (2024). https://doi.org/10.1007/s10483-024-3126-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-024-3126-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation