Log in

Mathematical modeling of mixed convective MHD Falkner-Skan squeezed Sutterby multiphase flow with non-Fourier heat flux theory and porosity

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In a wide variety of mechanical and industrial applications, e.g., space cooling, nuclear reactor cooling, medicinal utilizations (magnetic drug targeting), energy generation, and heat conduction in tissues, the heat transfer phenomenon is involved. Fourier’s law of heat conduction has been used as the foundation for predicting the heat transfer behavior in a variety of real-world contexts. This model’s production of a parabolic energy expression, which means that an initial disturbance would immediately affect the system under investigation, is one of its main drawbacks. Therefore, numerous researchers worked on such problem to resolve this issue. At last, this problem was resolved by Cattaneo by adding relaxation time for heat flux in Fourier’s law, which was defined as the time required to establish steady heat conduction once a temperature gradient is imposed. Christov offered a material invariant version of Cattaneo’s model by taking into account the upper-connected derivative of the Oldroyd model. Nowadays, both models are combinedly known as the Cattaneo-Christov (CC) model. In this attempt, the mixed convective MHD Falkner-Skan Sutterby nanofluid flow is addressed towards a wedge surface in the presence of the variable external magnetic field. The CC model is incorporated instead of Fourier’s law for the examination of heat transfer features in the energy expression. A two-phase nanofluid model is utilized for the implementation of nano-concept. The nonlinear system of equations is tackled through the bvp4c technique in the MATLAB software 2016. The influence of pertinent flow parameters is discussed and displayed through different sketches. Major and important results are summarized in the conclusion section. Furthermore, in both cases of wall-through flow (i.e., suction and injection effects), the porosity parameters increase the flow speed, and decrease the heat transport and the influence of drag forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

K :

permeability variable

S :

suction/injection parameter

λ :

mixed convective parameter

Pr :

Prandtl number

f′ :

dimensionless velocity

θ :

dimensionless temperature field

τ :

the ratio of effective heat capacity

\(Re_{x}^{{1\over{2}}}C_{\rm{f}}\) :

skin friction coefficient

\(Re_{x}^{-{1\over{2}}}Nu_{x}\) :

Nusselt number

U e :

free stream velocity

u, v :

velocity components, m · s−1

β T :

thermal coefficient expansion, \({1\over{k}}\)

g :

acceleration, m · s−2

σ :

electrical conductivity, s3 · m2 · kg−1

B 0 :

constant magnetic field, A−1 · kg · s−2

μ :

dynamic viscosity, kg · (m · s)−1

ν :

kinematic viscosity, m2 · s−1

α :

thermal diffusivity, m2 · s−1

k :

thermal conductivity, kg · m · K−1·s−3

ρ f :

density of fluid, kg · m−3

T :

temperature of the fluid, K

T w :

wall temperature, K

T :

ambient temperature, K

T f :

surface heat, K.

References

  1. CATTANEO, C. Sulla conduzione del calore. Atti del Seminario Matematico e Fisico dell’ Università, di Modena, 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  2. CHRISTOV, C. I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics Research Communications, 36, 481–486 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. CIARLETTA, M. and STRAUGHAN, B. Uniqueness and structural stability for the Cattaneo-Christov equations. Mechanics Research Communications, 37, 445–447 (2010)

    Article  MATH  Google Scholar 

  4. REDDY, C. S. and ALI, F. Cattaneo-Christov double diffusion theory for MHD cross nanofluid flow towards a vertical stretching sheet with activation energy. International Journal of Ambient Energy, 43(1), 3924–3933 (2022)

    Article  Google Scholar 

  5. ALI, F. and SUMMAYYA, N. Numerical simulation of Cattaneo-Christov double-diffusion theory with thermal radiation on MHD Eyring-Powell nanofluid towards a stagnation point. International Journal of Ambient Energy, 43(1), 4939–4949 (2021)

    Article  Google Scholar 

  6. FAIZAN, M., ALI, F., LOGANATHAN, K., ZAIB, A., REDDY, C. S., and ABDELSALAM, S. Entropy analysis of Sutterby nanofluid flow over a Riga sheet with gyrotactic microorganisms and Cattaneo-Christov double diffusion. Mathematics, 10(17), 3157 (2022)

    Article  Google Scholar 

  7. HAYAT, T., KHAN, M. I., FAROOQ, M., ALSAEDI, A., WAQAS, M., and YASMEEN, T. Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. International Journal of Heat and Mass Transfer, 99, 702–710 (2016)

    Article  Google Scholar 

  8. SHAFIQ, A., JABEEN, S., HAYAT, T., and ALSAEDI, A. Cattaneo-Christov heat flux model for squeezed flow of third grade fluid. Surface Review Letters, 24, 1750098 (2017)

    Article  Google Scholar 

  9. MUSTAFA, M. Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid. AIP Advances, 5, 047109 (2015)

    Article  Google Scholar 

  10. SHAH, Z., TASSADDIQ, A., ISLAM, S., ALKLAIBI, A. M., and KHAN, I. Cattaneo-Christov heat flux model for three-dimensional rotating flow of SWCNT and MWCNT nanofluid with Darcy-Forchheimer porous medium induced by a linearly stretchable surface. Symmetry, 11, 331 (2019)

    Article  MATH  Google Scholar 

  11. KHAN, U., SHAFIQ, A., ZAIB, A., WAKIF, A., and BALEANU, D. Numerical exploration of MHD Falkner-Skan Sutterby nanofluid flow by utilizing an advanced non-homogeneous two-phase nanofluid model and non-Fourier heat-flux theory. Alexandria Engineering Journal, 59, 4851–4864 (2020)

    Article  Google Scholar 

  12. KHAN, M. I., WAQAS, M., HAYAT, T., and ALSAEDI, A. A comparative study of Casson fluid with homogeneous-heterogeneous reactions. Journal of Colloid and Interface Science, 498, 85–90 (2017)

    Article  Google Scholar 

  13. BRIMMO, A. T. and QASAIMEH, M. A. Stagnation point flows in analytical chemistry and life sciences. RSC Advances, 7, 51206–51232 (2017)

    Article  Google Scholar 

  14. ATTIA, H. A. Stagnation point flow and heat transfer of a micropolar fluid with uniform suction or blowing. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 30, 51–55 (2008)

    Article  Google Scholar 

  15. HIEMENZ, K. Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytechnisches Journal, 326, 321–324 (1911)

    Google Scholar 

  16. MAHAPATRA, T. R. and GUPTA, A. S. Heat transfer in stagnation-point flow towards a stretching sheet. Heat and Mass Transfer, 38, 517–521 (2002)

    Article  Google Scholar 

  17. WAKIF, A. A novel numerical procedure for simulating steady MHD convective flows of radiative Casson fluids over a horizontal stretching sheet with irregular geometry under the combined influence of temperature-dependent viscosity and thermal conductivity. Mathematical Problem in Engineering, 2020, 1675350 (2020)

    Article  MathSciNet  Google Scholar 

  18. SUTTERBY, J. L. Laminar converging flow of dilute polymer solutions in conical sections: part I, viscosity data, new viscosity model, tube flow solution. AIChE Journal, 12, 63–68 (1966)

    Article  Google Scholar 

  19. BATRA, R. L. and EISSA, M. Helical flow of a Sutterby model fluid. Polymer Plastic Technology and Engineering, 33, 489–501 (1994)

    Article  Google Scholar 

  20. SOHAIL, M. and NAZ, R. Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby fluid flow in stretching cylinder. Physica A: Statistical Mechanics and Its Applications, 549, 124088 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. REHMAN, S. U., MIR, N. A., ALQARNI, M. S., FAROOQ, M., and MALIK, M. Y. Analysis of heat generation/absorption in thermally stratified Sutterby fluid flow with Cattaneo-Christov theory. Microsystem Technologies, 25, 3365–3373 (2019)

    Article  Google Scholar 

  22. USMAN, LIN, P., and GHAFFARI, A. Heat and mass transfer in a steady flow of Sutterby nanofluid over the surface of a stretching wedge. Physica Scripta, 96, 065003 (2021)

    Article  Google Scholar 

  23. ALI, F., LOGANATHAN, K., PRABU, E., ESWARAMOORTHI, S., FAIZAN, M., ZAIB, A., and CHAUDHARY, D. K. Entropy minimization on Sutterby nanofluid past a stretching surface with swimming of gyrotactic microorganisms and nanoparticles. Mathematical Problems in Engineering, 2021, 5759671 (2021)

    Google Scholar 

  24. KHAN, M. I., QAYYUM, S., HAYAT, T., and ALSEADI, A. Stratified flow of Sutterby fluid homogeneous-heterogeneous reaction and Cattaneo-Christov heat flux. International Journal of Numerical Methods for Heat & Fluid Flow, 29, 2977–2992 (2019)

    Article  Google Scholar 

  25. LIU, C. S., CHANG, C. W., and CHANG, J. R. A new shooting method for solving boundary layer equations in fluid mechanics. Computer Modeling in Engineering & Sciences, 32, 1–16 (2008)

    MathSciNet  MATH  Google Scholar 

  26. BIBI, M., REHMAN, K. U., MALIK, M. Y., and TAHIR, M. Numerical study of unsteady Williamson fluid flow and heat transfer in the presence of MHD through a permeable stretching surface. The European Physical Journal Plus, 133, 154 (2018)

    Article  Google Scholar 

  27. REDDY, R. R. S. Numerical solution of MHD Casson fluid flow due to a moving extensible surface with second-order velocity slip and carbon nanotubes. Engineering Transactions, 66, 263–279 (2018)

    Google Scholar 

  28. ALLAN, F. M. and HAJJI, M. A. Multi-layer parallel shooting method for multi-layer boundary value problems. 2009 International Conference on Innovations in Information Technology (IIT), IEEE, Al Ain, 289–293 (2009)

    Chapter  Google Scholar 

  29. GHAFFARI, A., JAVED, T., and MUSTAFA, I. Non-linear radiation influence on oblique stagnation point flow of Maxwell fluid. Revista Mexicana de Física, 64, 420–428 (2018)

    Article  MathSciNet  Google Scholar 

  30. PATIL, V. S., PATIL, N. S., and TIMOL, M. G. A remark on similarity analysis of boundary layer equations of a class of non-Newtonian fluids. International Journal of Non-Linear Mechanics, 71, 127–131 (2015)

    Article  Google Scholar 

  31. FU, W., SUN, L., CAO, H., CHEN, L., ZHOU, M., SHEN, S., ZHU, Y., and ZHUANG, S. Qualitative and quantitative recognition of volatile organic compounds in their liquid phase based on terahertz microfluidic EIT meta-sensors. IEEE Sensors Journal, 23(12), 12775–12784 (2023)

    Article  Google Scholar 

  32. FAN, X., WEI, G., LIN, X., WANG, X., SI, Z., ZHANG, X., SHAO, Q., MANGIN, S., FULLERTON, E., JIANG, L., and ZHAO, W. Reversible switching of interlayer exchange coupling through atomically thin VO2 via electronic state modulation. Matter, 2(6), 1582–1593 (2020)

    Article  Google Scholar 

  33. DAI, Z., XIE, J., and JIANG, M. A coupled peridynamics-smoothed particle hydrodynamics model for fracture analysis of fluid-structure interactions. Ocean Engineering, 279, 114582 (2023)

    Article  Google Scholar 

  34. DU, S., XIE, H., YIN, J., FANG, T., ZHANG, S., SUN, Y., CAI, C., BI, G., CHEN, Z., XIAO, D., CHEN, W., YANG, X. G., WANG, D., YIN, W. Y., and ZHENG, R. Competition pathways of energy relaxation of hot electrons through coupling with optical, surface, and acoustic phonons. The Journal of Physical Chemistry C, 127(4), 1929–1936 (2023)

    Article  Google Scholar 

  35. SHAO, Z., ZHAI, Q., and GUAN, X. Physical-model-aided data-driven linear power flow model: an approach to address missing training data. IEEE Transactions on Power Systems, 38(3), 2970–2973 (2023)

    Article  Google Scholar 

  36. LI, M., YANG, M., YU, Y., and LEE, W. A wind speed correction method based on modified hidden Markov model for enhancing wind power forecast. IEEE Transactions on Industry Applications, 58(1), 656–666 (2021)

    Article  Google Scholar 

  37. BAI, B., ZHOU, R., YANG, G., ZOU, W., and YUAN, W. The constitutive behavior and dissociation effect of hydrate-bearing sediment within a granular thermodynamic framework. Ocean Engineering, 268, 113408 (2023)

    Article  Google Scholar 

  38. XIANG, J., DENG, L., ZHOU, C., ZHAO, H., HUANG, J., and TAO, S. Heat transfer performance and structural optimization of a novel micro-channel heat sink. Chinese Journal of Mechanical Engineering, 35(1), 38 (2020)

    Article  Google Scholar 

  39. XIANG, J., YANG, W., LIAO, H., LI, P., CHEN, Z., and HUANG, J. Design and thermal performance of thermal diode based on the asymmetric flow resistance in vapor channel. International Journal of Thermal Sciences, 191, 108345 (2023)

    Article  Google Scholar 

  40. XIANG, J., LIAO, J., ZHU, Z., LI, P., CHEN, Z., HUANG, J., and CHEN, X. Directional fluid spreading on microfluidic chip structured with microwedge array. Physics of Fluids, 35(6), 62005 (2023)

    Article  Google Scholar 

  41. CHEN, D., WANG, Q., LI, Y., LI, Y., ZHOU, H., and FAN, Y. A general linear free energy relationship for predicting partition coefficients of neutral organic compounds. Chemosphere, 247, 125869 (2020)

    Article  Google Scholar 

  42. LI, S., ALI, F., ZAIB, A., LOGANATHAN, K., ELDIN, S. M., and KHAN, M. I. Bioconvection effect in the Carreau nanofluid with Cattaneo-Christov heat flux using stagnation point flow in the entropy generation: micromachines level study. Open Physics, 21, 20220228 (2023)

    Article  Google Scholar 

  43. LI, S., KHAN, M. I., ALZAHRANI, F., and ELDIN, S. M. Heat and mass transport analysis in radiative time dependent flow in the presence of Ohmic heating and chemical reaction, viscous dissipation: an entropy modeling. Case Studies in Thermal Engineering, 42, 102722 (2023)

    Article  Google Scholar 

  44. LI, S., PUNEETH, V., SAEED, A. M., SINGHAL, A., AL-YARIMI, F. A. M., KHAN, M. I., and ELDIN, S. M. Analysis of the Thomson and Troian velocity slip for the flow of ternary nanofluid past a stretching sheet. Scientific Reports, 13, 2340 (2023)

    Article  Google Scholar 

  45. LIU, Z., LI, S., SADAF, T., KHAN, S. U., ALZAHRANI, F., KHAN, M. I., and ELDIN, S. M. Numerical bio-convective assessment for rate type nanofluid influenced by Nield thermal constraints and distinct slip features. Case Studies in Thermal Engineering, 44, 102821 (2023)

    Article  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Group Research Project (No. RGP2/19/44).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Khan.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Khan, M.I., Ali, F. et al. Mathematical modeling of mixed convective MHD Falkner-Skan squeezed Sutterby multiphase flow with non-Fourier heat flux theory and porosity. Appl. Math. Mech.-Engl. Ed. 44, 2005–2018 (2023). https://doi.org/10.1007/s10483-023-3044-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-3044-5

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation