Log in

Droplet impact on wetted structured surfaces

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In this study, we numerically investigate the droplet impact onto a thin liquid film deposited on a structured surface with square pillars and cavities. The time evolution of crown geometry is strongly affected by the surface structure. When the thickness of the liquid film is larger than the structure height, the expanding speed of the crown base radius is independent of the structure width. However, if the liquid film thickness is equal to the structure height, the crown base expands slower as the structure width increases. Surface structures have strong effects on the crown height and radius, and can prevent ejected filament from breaking into satellite droplets for certain cases. For the liquid film with the thickness equal to the pillar height, both the crown height and the radius exhibit non-monotonic behaviors as the pillar width increases. There exists one pillar width which produces the smallest crown height and the largest crown radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. VAN DER BOS, A., VAN DER MEULEN, M. J., DRIESSEN, T., VAN DEN BERG, M., REINTEN, H., WIJSHOFF, H., VERSLUIS, M., and LOHSE, D. Velocity profile inside piezoacoustic inkjet droplets in flight: comparison between experiment and numerical simulation. Physical Review Applied, 1(1), 014004 (2014)

    Article  Google Scholar 

  2. AZIZ, S. D. and CHANDRA, S. Impact, recoil and splashing of molten metal droplets. International Journal of Heat and Mass Transfer, 43(16), 2841–2857 (2000)

    Article  Google Scholar 

  3. MOREIRA, A., MOITA, A., and PANAO, M. Advances and challenges in explaining fuel spray im**ement: how much of single droplet impact research is useful? Progress in Energy and Combustion Science, 36(5), 554–580 (2010)

    Article  Google Scholar 

  4. GILET, T. and BOUROUIBA, L. Fluid fragmentation shapes rain-induced foliar disease transmission. Journal of the Royal Society Interface, 12(104), 20141092 (2015)

    Article  Google Scholar 

  5. GART, S., MATES, J. E., MEGARIDIS, C. M., and JUNG, S. Droplet impacting a cantilever: a leaf-raindrop system. Physical Review Applied, 3(4), 044109 (2015)

    Article  Google Scholar 

  6. REIN, M. Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dynamics Research, 12(2), 61–93 (1993)

    Article  Google Scholar 

  7. HUANG, Q. and ZHANG, H. A study of different fluid droplets impacting on a liquid film. Petroleum Science, 5(1), 62–66 (2008)

    Article  Google Scholar 

  8. YARIN, A. L. and WEISS, D. A. Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. Journal of Fluid Mechanics, 283, 141–173 (1995)

    Article  Google Scholar 

  9. WANG, A. B. and CHEN, C. C. Splashing impact of a single drop onto very thin liquid films. Physics of Fluids, 12(9), 2155–2158 (2000)

    Article  Google Scholar 

  10. COSSALI, G., MARENGO, M., COGHE, A., and ZHDANOV, S. The role of time in single drop splash on thin film. Experiments in Fluids, 36(6), 888–900 (2004)

    Article  Google Scholar 

  11. ELLIS, A., SMITH, F., and WHITE, A. Droplet impact on to a rough surface. The Quarterly Journal of Mechanics & Applied Mathematics, 64(2), 107–139 (2011)

    Article  MathSciNet  Google Scholar 

  12. HUNG, Y. L., WANG, M. J., LIAO, Y. C., and LIN, S. Y. Initial wetting velocity of droplet impact and spreading: water on glass and parafilm. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384(1–3), 172–179 (2011)

    Article  Google Scholar 

  13. VANDER WAL, R. L., BERGER, G. M., and MOZES, S. D. The combined influence of a rough surface and thin fluid film upon the splashing threshold and splash dynamics of a droplet impacting onto them. Experiments in Fluids, 40(1), 23–32 (2006)

    Article  Google Scholar 

  14. BARTHLOTT, W. and NEINHUIS, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202(1), 1–8 (1997)

    Article  Google Scholar 

  15. FENG, L., LI, S., LI, Y., LI, H., ZHANG, L., ZHAI, J., SONG, Y., LIU, B., JIANG, L., and ZHU, D. Super-hydrophobic surfaces: from natural to artificial. Advanced Materials, 14(24), 1857–1860 (2002)

    Article  Google Scholar 

  16. YARIN, A. L. Drop impact dynamics: splashing, spreading, receding, bouncing. Annual Review Fluid Mechanics, 38, 159–192 (2006)

    Article  MathSciNet  Google Scholar 

  17. JOSSERAND, C. and THORODDSEN, S. T. Drop impact on a solid surface. Annual Review of Fluid Mechanics, 48, 365–391 (2016)

    Article  MathSciNet  Google Scholar 

  18. LEE, M., CHANG, Y. S., and KIM, H. Y. Drop impact on microwetting patterned surfaces. Physics of Fluids, 22(7), 072101 (2010)

    Article  Google Scholar 

  19. KANNAN, R. and SIVAKUMAR, D. Drop impact process on a hydrophobic grooved surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317(1–3), 694–704 (2008)

    Article  Google Scholar 

  20. LATKA, A., STRANDBURG-PESHKIN, A., DRISCOLL, M. M., STEVENS, C. S., and NAGEL, S. R. Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure. Physical Review Letters, 109(5), 054501 (2012)

    Article  Google Scholar 

  21. XU, L. Liquid drop splashing on smooth, rough, and textured surfaces. Physical Review E, 75(5), 056316 (2007)

    Article  Google Scholar 

  22. RIOBOO, R., BAUTHIER, C., CONTI, J., VOUE, M., and DE CONINCK, J. Experimental investigation of splash and crown formation during single drop impact on wetted surfaces. Experiments in Fluids, 35(6), 648–652 (2003)

    Article  Google Scholar 

  23. WEISS, D. A. and YARIN, A. L. Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation. Journal of Fluid Mechanics, 385, 229–254 (1999)

    Article  Google Scholar 

  24. JOSSERAND, C. and ZALESKI, S. Droplet splashing on a thin liquid film. Physics of Fluids, 15(6), 1650–1657 (2003)

    Article  Google Scholar 

  25. GUEYFFIER, D. and ZALESKI, S. Finger formation during droplet impact on a liquid film. Comptes Rendus de l’Académie des Sciences-Series IIB-Mechanics Physics Astronomy, 12(326), 839–844 (1998)

    Article  Google Scholar 

  26. COSSALI, G. E., COGHE, A., and MARENGO, M. The impact of a single drop on a wetted solid surface. Experiments in Fluids, 22(6), 463–472 (1997)

    Article  Google Scholar 

  27. LEE, S. H., HUR, N., and KANG, S. A numerical analysis of drop impact on liquid film by using a level set method. Journal of Mechanical Science and Technology, 25(10), 2567 (2011)

    Article  Google Scholar 

  28. MUKHERJEE, S. and ABRAHAM, J. Crown behavior in drop impact on wet walls. Physics of Fluids, 19(5), 052103 (2007)

    Article  Google Scholar 

  29. BRACKBILL, J. U., KOTHE, D. B., and ZEMACH, C. A continuum method for modeling surface tension. Journal of Computational Physics, 100(2), 335–354 (1992)

    Article  MathSciNet  Google Scholar 

  30. WELLER, H. G. A new approach to VoF-based interface capturing methods for incompressible and compressible flow. Technical Report, OpenCFD Ltd., TR/HGW/04, 35 (2008)

  31. SHETABIVASH, H., OMMI, F., and HEIDARINEJAD, G. Numerical analysis of droplet impact onto liquid film. Physics of Fluids, 26(1), 012102 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The numerical simulations were performed on Tianhe-1A, the National Super Computing Center in Tian**, China. M. MOHASAN would like to thank Chinese Scholarship Council for providing Chinese Government Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yantao Yang.

Additional information

Citation: MOHASAN, M., AQEEL, A. B., DUAN, H. L., LYU, P. Y., and YANG, Y. T. Droplet impact on wetted structured surfaces. Applied Mathematics and Mechanics (English Edition), 43(3), 437–446 (2022) https://doi.org/10.1007/s10483-022-2820-5

Project supported by the National Natural Science Foundation of China (Nos. 11988102, 91848201, 11872004, and 11802004)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohasan, M., Aqeel, A.B., Duan, H. et al. Droplet impact on wetted structured surfaces. Appl. Math. Mech.-Engl. Ed. 43, 437–446 (2022). https://doi.org/10.1007/s10483-022-2820-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-022-2820-5

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation