Log in

Dynamic analysis of geared transmission system for wind turbines with mixed aleatory and epistemic uncertainties

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper deals with the co-existence of mixed aleatory and epistemic uncertainties in a wind turbine geared system for more reliable and robust vibration analyses. To this end, the regression-based polynomial chaos expansion (PCE) is used to track aleatory uncertainties, and the polynomial surrogate approach (PSA) is developed to treat the epistemic uncertainties. This non-intrusive dual-layer framework shares the same collocation pool, which is extracted from the Legendre series. Moreover, the regression technique has been implemented in both layers to enhance calculation efficiency. Numerical validation is carried out to show the effectiveness of the proposed method. New vibration behaviors of the geared transmission system are observed, and the mechanism behind is discussed in detail. The findings of this paper will contribute to the insightful understanding of such wind turbine geared systems under hybrid uncertainties and are beneficial for the condition monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

P k(x):

Legendre polynomials

X k :

Legendre quadrature pool

ξ :

standard aleatory vector

ψ k(ξ):

Askey chaos basis

\({\boldsymbol{\tilde \gamma}}\) :

polynomial chaos (PC) coefficient vector

H :

transform matrix in polynomial chaos expansion (PCE)

μ k y :

statistic moments

φ j(ζ):

simplex polynomial basis

\({\boldsymbol{\tilde \eta}}\) :

surrogate coefficient vector

S :

transform matrix in polynomial surrogate approach (PSA)

K m :

mesh stiffness of gear pair

e :

dynamic transmission error

θ 1, θ 2, θ 3, θ 4 :

angular displacements of system

I 1,h, I 2, I 3, I 4 :

moments of inertia of system

K s1 , K s2 :

shaft stiffnesses

T b, T g :

torques on blade and generator

C s1 , C s2 C m :

dam** coefficients of shafts and meshing

ρ :

density of materials

w :

effective tooth width

R p, R g :

radii of pinion and gear

L l, L 2 :

lengths of shafts

ω :

revolution speed

F :

dynamic mesh force.

References

  1. LIU, G. Z., GUO, X. M., and ZHU, L. Dynamic analysis of wind turbine tower structures in complex ocean environment. Applied Mathematics and Mechanics (English Edition), 41(7), 999–1010 (2020) https://doi.org/10.1007/s10483-020-2624-8

    Article  MathSciNet  MATH  Google Scholar 

  2. GAO, Z., LI, Y., WANG, T., KE, S., and LI, D. Recent improvements of actuator line-large-eddy simulation method for wind turbine wakes. Applied Mathematics and Mechanics (English Edition), 42(4), 511–526 (2021) https://doi.org/10.1007/s10483-021-2717-8

    Article  MathSciNet  Google Scholar 

  3. ZHOU, D., ZHANG, X., and ZHANG, Y. Dynamic reliability analysis for planetary gear system in shearer mechanisms. Mechanism and Machine Theory, 105, 244–259 (2016)

    Article  Google Scholar 

  4. HU, W., CHOI, K., and CHO, H. Reliability-based design optimization of wind turbine blades for fatigue life under dynamic wind load uncertainty. Structural and Multidisciplinary Optimization, 54(4), 953–970 (2016)

    Article  Google Scholar 

  5. ROGERS, T. J., GARDNER, P., DERVILIS, N., WORDEN, K., MAGUIRE, A. E., PAPATHEOU, E., and CROSS, E. J. Probabilistic modelling of wind turbine power curves with application of heteroscedastic Gaussian process regression. Renewable Energy, 148, 1124–1136 (2020)

    Article  Google Scholar 

  6. DING, H., TANG, J., and SHAO, W. Automatic data-driven operation and optimization of uncertain misalignment by considering mechanical power transmission performances of spiral bevel and hypoid gears. Applied Soft Computing, 82, 105600 (2019)

    Article  Google Scholar 

  7. XU, B., CHEN, D., ZHANG, H., LI, C., and ZHOU, J. Shaft misalignment induced vibration of a hydraulic turbine generating system considering parametric uncertainties. Journal of Sound and Vibration, 435, 74–90 (2018)

    Article  Google Scholar 

  8. MA, H., ZENG, J., FENG, R., PANG, X., WANG, Q., and WEN, B. Review on dynamics of cracked gear systems. Engineering Failure Analysis, 55, 224–245 (2015)

    Article  Google Scholar 

  9. MARHADI, K. S. and SKRIMPAS, G. A. Automatic threshold setting and its uncertainty quantification in wind turbine condition monitoring system. International Journal of Prognostics and Health Management, 6, 2015005 (2015)

    Google Scholar 

  10. TABATABAEIPOUR, S. M., ODGAARD, P. F., BAK, T., and STOUSTRUP, J. Fault detection of wind turbines with uncertain parameters: a set-membership approach. Energies, 5(7), 2424–2448 (2012)

    Article  Google Scholar 

  11. ZENG, J., MA, H., YU, K., XU, Z., and WEN, B. Coupled flapwise-chordwise-axial-torsional dynamic responses of rotating pre-twisted and inclined cantilever beams subject to the base excitation. Applied Mathematics and Mechanics (English Edition), 40(8), 1053–1082 (2019) https://doi.org/10.1007/s10483-019-2506-6

    Article  MathSciNet  MATH  Google Scholar 

  12. ZHANG, Z. and CHEN, Y. Harmonic balance method with alternating frequency/time domain technique for nonlinear dynamical system with fractional exponential. Applied Mathematics and Mechanics (English Edition), 35(4), 423–436 (2014) https://doi.org/10.1007/s10483-014-1802-9

    Article  MathSciNet  Google Scholar 

  13. ROBERTSON, A., BACHYNSKI, E. E., GUEYDON, S., WENDT, F., and SCHÜNEMANN, P. Total experimental uncertainty in hydrodynamic testing of a semisubmersible wind turbine, considering numerical propagation of systematic uncertainty. Ocean Engineering, 195, 106605 (2020)

    Article  Google Scholar 

  14. ZHANG, J., YAN, J., INFIELD, D., LIU, Y., and LIEN, F. S. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy, 241, 229–244 (2019)

    Article  Google Scholar 

  15. SUN, W., LI, X., and WEI, J. An approximate solution method of dynamic reliability for wind turbine gear transmission with parameters of uncertain distribution type. International Journal of Precision Engineering and Manufacturing, 19(6), 849–857 (2018)

    Article  Google Scholar 

  16. BACHYNSKI, E., THYS, M., and DELHAYE, V. Dynamic response of a monopile wind turbine in waves: experimental uncertainty analysis for validation of numerical tools. Applied Ocean Research, 89, 96–114 (2019)

    Article  Google Scholar 

  17. BEYAOUI, M., TOUNSI, M., ABBOUDI, K., FEKI, N., WALHA, L., and HADDAR, M. Dynamic behaviour of a wind turbine gear system with uncertainties. Comptes Rendus Mécanique, 344(6), 375–387 (2016)

    Article  Google Scholar 

  18. AVENDAÑO-VALENCIA, L. D. and FASSOIS, S. D. Damage/fault diagnosis in an operating wind turbine under uncertainty via a vibration response Gaussian mixture random coefficient model based framework. Mechanical Systems and Signal Processing, 91, 326–353 (2017)

    Article  Google Scholar 

  19. MABROUK, I. B., EL-HAMI, A., WALHA, L., ZGHAL, B., and HADDAR, M. Dynamic response analysis of vertical axis wind turbine geared transmission system with uncertainty. Engineering Structures, 139, 170–179 (2017)

    Article  Google Scholar 

  20. GUERINE, A., EL-HAMI, A., WALHA, L., FAKHFAKH, T., and HADDAR, M. A polynomial chaos method for the analysis of the dynamic behavior of uncertain gear friction system. European Journal of Mechanics-A/Solids, 59, 76–84 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. WEI, S., ZHAO, J., HAN, Q., and CHU, F. Dynamic response analysis on torsional vibrations of wind turbine geared transmission system with uncertainty. Renewable Energy, 78, 60–67 (2015)

    Article  Google Scholar 

  22. WEI, S., CHU, F. L., DING, H., and CHEN, L. Q. Dynamic analysis of uncertain spur gear systems. Mechanical Systems and Signal Processing, 150, 107280 (2021)

    Article  Google Scholar 

  23. WANG, J. and ZHANG, J. Effects of random interval parameters on spur gear vibration. Journal of Vibration and Control, 27, 2332–2344 (2021)

    Article  MathSciNet  Google Scholar 

  24. FU, C., XU, Y. D., YANG, Y. F., LU, K., GU, F. S., and BALL, A. D. Response analysis of an accelerating unbalanced rotating system with both random and interval variables. Journal of Sound and Vibration, 466, 115047 (2020)

    Article  Google Scholar 

  25. NECHAK, L. and SINOU, J. Hybrid surrogate model for the prediction of uncertain friction-induced instabilities. Journal of Sound and Vibration, 396, 122–143 (2017)

    Article  Google Scholar 

  26. LI, L., LUO, Z., HE, F. X., SUN, K., and YAN, X. L. An improved partial similitude method for dynamic characteristic of rotor systems based on Levenberg-Marquardt method. Mechanical Systems and Signal Processing, 165, 108405 (2022)

    Article  Google Scholar 

  27. SLOT, R. M., SØRENSEN, J. D., SUDRET, B., SVENNINGSEN, L., and THØGERSEN, M. L. Surrogate model uncertainty in wind turbine reliability assessment. Renewable Energy, 151, 1150–1162 (2020)

    Article  Google Scholar 

  28. MURCIA, J. P., RÉTHORÉ, P. E., DIMITROV, N., NATARAJAN, A., SØRENSEN, J. D., GRAF, P., and KIM, T. Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates. Renewable Energy, 119, 910–922 (2018)

    Article  Google Scholar 

  29. XIU, D. and KARNIADAKIS, G. E. Modeling uncertainty in flow simulations via generalized polynomial chaos. Journal of Computational Physics, 187(1), 137–167 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. GHANEM, R. G. and SPANOS, P. D. Stochastic Finite Elements: A Spectral Approach, Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  31. WU, J., LUO, Z., ZHANG, N., and ZHANG, Y. A new uncertain analysis method and its application in vehicle dynamics. Mechanical Systems and Signal Processing, 50, 659–675 (2015)

    Article  Google Scholar 

  32. XIU, D. and KARNIADAKIS, G. E. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM Journal on Scientific Computing, 24(2), 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. WAN, H. P., REN, W. X., and TODD, M. D. Arbitrary polynomial chaos expansion method for uncertainty quantification and global sensitivity analysis in structural dynamics. Mechanical Systems and Signal Processing, 142, 106732 (2020)

    Article  Google Scholar 

  34. WU, J., WALKER, P. D., RUAN, J., and ZHANG, N. Target torque estimation for gearshift in dual clutch transmission with uncertain parameters. Applied Mathematical Modelling, 51, 1–20 (2017)

    Article  MATH  Google Scholar 

  35. FU, C., YANG, Y. F., LU, K., and GU, F. S. Nonlinear vibration analysis of a rotor system with parallel and angular misalignments under uncertainty via a Legendre collocation approach. International Journal of Mechanics and Materials in Design, 16, 557–568 (2020)

    Article  Google Scholar 

  36. SHI, W., KIM, C. W., CHUNG, C. W., and PARK, H. C. Dynamic modeling and analysis of a wind turbine drivetrain using the torsional dynamic model. International Journal of Precision Engineering and Manufacturing, 14(1), 153–159 (2013)

    Article  Google Scholar 

  37. LI, R. F. and WANG, J. J. Dynamics of Gear System — Vibration, Shock and Noise (in Chinese), Science Press, Bei**g (1997)

    Google Scholar 

  38. WANG, Y. and ZHANG, W. Stochastic vibration model of gear transmission systems considering speed-dependent random errors. Nonlinear Dynamics, 17(2), 187–203 (1998)

    Article  MATH  Google Scholar 

  39. YANG, J. Vibration analysis on multi-mesh gear-trains under combined deterministic and random excitations. Mechanism and Machine Theory, 59, 20–33 (2013)

    Article  Google Scholar 

  40. ALEMAYEHU, F. M. and EKWARO-OSIRE, S. Uncertainty considerations in the dynamic loading and failure of spur gear pairs. Journal of Mechanical Design, 135(8), 084501 (2013)

    Article  Google Scholar 

  41. FU, C., REN, X. M., and YANG, Y. F. Vibration analysis of rotors under uncertainty based on Legendre series. Journal of Vibration Engineering and Technologies, 7(1), 43–51 (2019)

    Article  Google Scholar 

  42. FU, C., XU, Y. D., YANG, Y. F., LU, K., GU, F. S., and BALL, A. D. Dynamics analysis of a hollow-shaft rotor system with an open crack under model uncertainties. Communications in Nonlinear Science and Numerical Simulation, 83, 105102 (2020)

    Article  MATH  Google Scholar 

  43. ZHANG, H. P., LU, K., ZHANG, W., and FU, C. Investigation on dynamic behaviors of rotor system with looseness and nonlinear supporting. Mechanical Systems and Signal Processing, 166, 108400 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan Lu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 12072263 and 11972295) and the Fundamental Research Funds for the Central Universities (No. G2021KY0601)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Lu, K., Xu, Y.D. et al. Dynamic analysis of geared transmission system for wind turbines with mixed aleatory and epistemic uncertainties. Appl. Math. Mech.-Engl. Ed. 43, 275–294 (2022). https://doi.org/10.1007/s10483-022-2816-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-022-2816-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation