Log in

Parameter optimization of pharmacokinetics based on artificial immune network

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A new method for parameter optimization of pharmacokinetics based on an artificial immune network named PKAIN is proposed. To improve local searching ability of the artificial immune network, a partition-based concurrent simplex mutation is developed. By means of evolution of network cells in the PKAIN artificial immune network, an optimal set of parameters of a given pharmacokinetic model is obtained. The Laplace transform is applied to the pharmacokinetic differential equations of remifentanil and its major metabolite, remifentanil acid. The PKAIN method is used to optimize parameters of the derived compartment models. Experimental results show that the two-compartment model is sufficient for the pharmacokinetic study of remifentanil acid for patients with mild degree of renal impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang X M, Yang K N, Zhang F L. Clinical application guide of pharmacokinetics[M]. Bei**g: Military Medicine Science Press, 2004, 391–405 (in Chinese).

    Google Scholar 

  2. Zhang J W, Pei X B. Feathering method for processing absorption and elimination rate constants of mono-compartment drugs administered with repeated doses of nonparenteral administration[J]. Acta Universitatis Medicinalis Anhui, 2004, 39(1):34–36 (in Chinese).

    Google Scholar 

  3. Jang J S R, Sun C T, Mizutani E. Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence[M]. NJ, USA: Prentice Hall, 1997, 112–137.

    Google Scholar 

  4. Nelder A, Mead R. A simplex method for function optimization[J]. Computation J, 1965, 7(12):308–313.

    MATH  Google Scholar 

  5. Jeffrey C L, James A R, Margaret HW, Paul EW. Convergence properties of the Nelder-Mead simplex method in low dimensions[J]. Society for Industrial and Applied Mathematics, 1998, 9(1):112–147.

    MATH  Google Scholar 

  6. Liu L B, Zhang G W, **e Z C. Pharmacokinetics parameter calculation based on improved simplex method[J]. Journal of Zhejiang University of Science and Technology, 2007, 19(1):4–6 (in Chinese).

    Google Scholar 

  7. de Castro L N, Timmis J. Artificial immune systems as a novel soft computing paradigm[J]. Soft Computing, 2003, 7(8):526–544.

    Google Scholar 

  8. Chun J S, Hahn S Y. A study on comparison of optimization performances between immune algorithm and other heuristic algorithms[J]. IEEE Transactions on Magnetics, 1998, 34(5):2972–2975.

    Article  Google Scholar 

  9. **e K G, Zeng X H, Li C Y, et al. Comparative analysis between immune algorithm and other random searching algorithms[J]. Journal of Chongqing University, 2003, 26(11):43–47 (in Chinese).

    Google Scholar 

  10. Yuan S F, Chu F L. Fault diagnosis based on support vector machines with parameter optimization by artificial immunization algorithm[J]. Mechanical System and Signal Processing, 2007, 21(3):1318–1330.

    Article  Google Scholar 

  11. Ma X L, Liu F, Jiao L C. Parameters optimization of synergetic neural network based on immunity clonal algorithm[J]. J Infrared Millim Wave, 2007, 26(1):38–42 (in Chinese).

    Google Scholar 

  12. He H, Qian F. Parameters setting of PID controller based on adaptive immune evolutionary algorithms[J]. Computer Applications, 2002, 27(5):1175–1176, 1196 (in Chinese).

    Google Scholar 

  13. de Castro L N, Timmis J. An artificial immune network for multimodal function optimization[C]. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC’02), Honolulu, HI, USA: IEEEE Service Center, 2004, 1:674–699.

    Google Scholar 

  14. de Franca F O, Von Zuben F J, de Castro L N. An artificial immune network for multimodal function optimization on dynamic environments[C]. In: Proc of the GECCO conf, Washington DC: ACM Press, 2005, 289–296.

    Chapter  Google Scholar 

  15. Wang G J. Pharmacokinetics[M]. Bei**g: Chemical Industry Press, 2005, 88–120 (in Chinese).

    Google Scholar 

  16. Huang X J, **e H T, Sun R Y. Laplace transform and its applications in the pharmacokinetics[J]. Chin J Clin Pharmocol Ther, 2001, 6(1):59–63 (in Chinese).

    Google Scholar 

  17. Ada G L, Nossal G J V. The clonal selection theory[J]. Scientific American, 1987, 257(2):50–57.

    Article  Google Scholar 

  18. Jerne N K. Towards a network theory of the immune system[J]. Annals of Immunology, Ser C, 1974, 125(1/2):373–389.

    Google Scholar 

  19. Huang X H, Shi J, Li J, et al. Pharmacokinetic pharmacodynamic modeling and simulation: concepts and basic principles(2)[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2007, 12(3):334–341.

    Google Scholar 

  20. de Castro L N, Von Zuben F J. Learning and optimization using the clonal selection principle[J]. IEEE Trans on Evol Comp, 2002, 6(3):239–251.

    Article  Google Scholar 

  21. Renders J, Bersini H. Hybridizing genetic algorithms with hill-climbing methods for global optimization: two possible ways[C]. In: Proceedings of the First IEEE Conference on Evolutionary Computation, Orlando Florida: IEEE Press, 1994, 312–317.

    Chapter  Google Scholar 

  22. Yen J, Liao J, Randolph D, Lee B. A Hybrid approach to modeling metabolic systems using a genetic algorithms and the simplex method[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 1998, 28(2):173–191.

    Article  Google Scholar 

  23. Yu J J, Sun S D, Wang J Q. Simplex immune hybrid algorithm and its application to multi-dimensional no-protruding function optimization[J]. Mechanical Science and Technology, 2007, 26(3):296–303 (in Chinese).

    Google Scholar 

  24. de Castro L N, Von Zuben F J. aiNet: an artificial immune network for data analysis[M]. Abbass H A, Saker R A, Newton C S (eds). Data Mining: A Heuristic Approach, USA: Idea Group Publishing, 2001, 231–259.

    Google Scholar 

  25. Westmoreland C L, Hoke J F, Sebel P S, et al. Pharmacokinetics of remifentanil (GI87084B) and its major metabolite (GR90291) in patients undergoing elective surgery[J]. Anesthesiology, 1993, 79(5):893–903.

    Article  Google Scholar 

  26. Pitsiu M, Wilmer A, Bodenham A, et al. Pharmacokinetics of remifentanil and its major metabolite, remifentanil acid, in ICU patients with renal impairment[J]. British Journal of naesthesia, 2004, 92(4):493–503.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Liu  (刘丽).

Additional information

Communicated by ZHANG Lu-kun

Project supported by Health Department of Jiangsu Province (No. P200512)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Zhou, Sd., Lu, Hw. et al. Parameter optimization of pharmacokinetics based on artificial immune network. Appl. Math. Mech.-Engl. Ed. 29, 549–558 (2008). https://doi.org/10.1007/s10483-008-0414-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-008-0414-7

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation