Log in

Pontibacter oryzae sp. nov., a carotenoid-producing species isolated from a rice paddy field

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A taxonomic study using a polyphasic approach was performed on a Gram-stain negative, red-pink, aerobic, non-motile, asporogenous, rod-shaped bacterium, designated strain KIRANT, isolated from soil collected from a rice paddy field. The 16S rRNA gene sequence analysis showed that strain KIRANT is phylogenetically related to Pontibacter actiniarum KMM 6156T, Pontibacter korlensis X14-1T, Pontibacter odishensis JC130T, Pontibacter litorisediminis YKTF-7T and Pontibacter aurantiacus NP1T (97.6, 97.5, 97.3, 97.3 and 96.7% sequence similarity, respectively). The major fatty acids of strain KIRANT were identified as iso-C15:0, iso-C15:0 3-OH and summed feature 4. The predominant menaquinone was identified as MK-7. The polar lipid profile was found to consist of phosphatidylethanolamine, four unidentified phospholipids, an unidentified glycolipid, an unidentified aminolipid and four unidentified lipids. The genome of strain KIRANT has a G + C content of 48.3 mol%. The in silico DNA–DNA hybridization and average nucleotide identity values between strain KIRANT and the closely related strains P. actiniarum KMM 6156T and P. korlensis X14-1T were 21.2%/21.8% and 76.4%/75.1%, respectively. On the basis of the data from phenotypic tests and genotypic differences between strain KIRANT and its close phylogenetic relatives, strain KIRANT is concluded to represent a new species belonging to the genus Pontibacter, for which the name Pontibacter oryzae sp. nov. is proposed. The type strain is KIRANT (= KACC 19815T = JCM 32880T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aziz RK et al (2008) The RAST server: rapid Annotations Using Subsystems Technology. BMC Genom 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  Google Scholar 

  • Bernardet JF, Nakagawa Y, Holmes B, Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070

    CAS  PubMed  Google Scholar 

  • Breznak JA, Costilow RN (2007) Physicochemical factors in growth. In: Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds) Methods for general and molecular bacteriology, 3rd edn. American Society for Microbiology, Washington, DC, pp 309–329

    Google Scholar 

  • Buck JD (1982) Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chhetri G, Yang D, Choi J et al (2018a) Edaphorhabdus rosea gen. nov., sp. nov., a new member of the family Cytophagaceae isolated from soil in South Korea. Antonie Van Leeuwenhoek 111:2385

    Article  CAS  PubMed  Google Scholar 

  • Chhetri G, Yang D, Choi J et al (2018b) Flavobacterium edaphi sp. nov., isolated from soil from Jeju Island, Korea. Arch Microbiol 201(4):539–545

    Article  PubMed  Google Scholar 

  • Chhetri G, Kim J, Kim I et al (2019a) Pontibacter chitinilyticus sp. nov., a novel chitin-hydrolysing bacterium isolated from soil. Antonie Van Leeuwenhoek. https://doi.org/10.1007/s10482-019-01235-1

    Article  PubMed  Google Scholar 

  • Chhetri, G., Kim, J., Kim, I. et al. (2019b). Lysobacter caseinilyticus, sp. nov., a casein hydrolyzing bacterium isolated from sea-water. https://doi.org/10.1007/s10482-019-01267-7

    Article  CAS  PubMed  Google Scholar 

  • Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466

    Article  CAS  PubMed  Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fautz E, Reichenbach H (1980) A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8:87–91

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Fisher JF, Meroueh SO, Mobashery S (2005) Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev 105:395–424

    Article  CAS  PubMed  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  CAS  PubMed  Google Scholar 

  • Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by highperformance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469

    Article  CAS  Google Scholar 

  • Kai B, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) antiSMASH 50: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz310

    Article  Google Scholar 

  • Kang JY, Joung Y, Chun J, Kim H, Joh K et al (2013) Pontibacter saemangeumensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 63:565–569

    Article  CAS  PubMed  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbial 62:716–721

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Komagata K, Suzuki KI (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–205

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) Mega 7: molecular evolutionary genetics analysis in version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuykendall LD, Roy MA, O’Neill JJ, Devine TE (1988) Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Evol Microbiol 38:358–361

    CAS  Google Scholar 

  • Lee D, Jang JH, Cha S et al (2016) Telluribacter humicola gen. nov., sp. nov., a new member of the family Cytophagaceae isolated from soil in South Korea. Antonie Van Leeuwenhoek 109:1525–1533

    Article  CAS  PubMed  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Goker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

    Article  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Mukherjee S, Lapidus A, Shapiro N et al (2015) High quality draft genome sequence and analysis of Pontibacter roseus type strain SRC-1(T) (DSM 17521(T)) isolated from muddy waters of a drainage system in Chandigarh, India. Stand Genomic Sci 10:8. https://doi.org/10.1186/1944-3277-10-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nedashkovskaya OI, Kim SB, Suzuki M, Shevchenko LS, Lee MS et al (2005) Pontibacter actiniarum gen. nov., sp. nov., a novel member of the phylum ‘Bacteroidetes’, and proposal of Reichenbachiella gen nov as a replacement for the illegitimate prokaryotic generic name Reichenbachia. Int J Syst Evol Microbiol 55:2583–2588

    Article  CAS  PubMed  Google Scholar 

  • Park S, Park JM, Lee KH, Yoon JH (2016) Pontibacter litorisediminis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 66:4172–4178

    Article  CAS  PubMed  Google Scholar 

  • Piddock LJV (2006) Multidrug-resistance efflux pumps? not just for resistance. Nat Rev Microbiol 4:629–636. https://doi.org/10.1038/nrmicro1464

    Article  CAS  PubMed  Google Scholar 

  • Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967

    CAS  Google Scholar 

  • Singh AK, Garg N, Lal R (2015) Pontibacter chinhatensis sp. nov., isolated from pond sediment containing discarded hexachlorocyclohexane isomer waste. Int J Syst Evol Microbiol 65:2248–2254

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Kumari R, Nayyar N, Lal R (2017) Pontibacter aurantiacus sp. nov. isolated from hexachlorocyclohexane (HCH) contaminated soil. Int J Syst Evol Microbiol 67:1400–1407

    Article  CAS  PubMed  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhang K, Cai F, Zhang L, Tang Y, Dai J, Fang C (2010) Pontibacter xinjiangensis sp. nov., in the phylum 'Bacteroidetes', and reclassification of [Effluviibacter] roseus as Pontibacter roseus comb. nov. Int J Syst Evol Microbiol 60:99–103

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Zeng XC, Nie Y, Luo X, Zhou E et al (2014) Pontibacter diazotrophicus sp. nov., a novel nitrogen-fixing bacterium of the family Cytophagaceae. PLoS ONE 9:e92294

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhang QJ, Luo XS, Tang YL, Dai J et al (2008) Pontibacter korlensis sp. nov., isolated from the desert of **njiang, China. Int J Syst Evol Microbiol 58:1210–1214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof Dr. Bernhard Schink (University of Konstanz, Konstanz, Germany) for the suggested species names. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B4009448).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taegun Seo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical standards

This study does not describe any experimental work related to human.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhetri, G., Kim, J., Kim, H. et al. Pontibacter oryzae sp. nov., a carotenoid-producing species isolated from a rice paddy field. Antonie van Leeuwenhoek 112, 1705–1713 (2019). https://doi.org/10.1007/s10482-019-01298-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-019-01298-0

Keywords

Navigation