Log in

Analysis and improvement of the binary particle swarm optimization

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Solving binary-real problems with bio-inspired algorithms is an active research matter. However, the efficiency of the employed algorithm varies drastically by tailoring the governing equations or just by adopting “more adequate” parameter setting. Within this framework, we aim to improve the parameter setting of the binary particle swarm optimization (BPSO). We derive a Markov chain model of BPSO. The transition probabilities reveal that the acceleration coefficients control the transition speed between the exploitation and exploration phases. The transition probabilities also depict a poor exploration ratio in high-dimensional search spaces. Increasing the values of the acceleration coefficients may enhance the exploration ratio. Nevertheless, overly high values for these coefficients present some shortcomings. Numerical experiments realized on three different problem sets (e.g. multidimensional knapsack problem) further prove the need to increase the acceleration coefficients as the search space dimension rises. We recommend a set of equations governing the best setting for acceleration coefficients. Finally, a comparison with other BPSO variants reveals the merits of the suggested setting over the conventional ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Note that the reasoning made here is valid for other PSO topologies.

References

  • Agapie, A. (1998). Genetic algorithms: Minimal conditions for convergence. In J. Hao, E. Lutton, E. Ronald, M. Schoenauer, & D. Snyers (Eds.), Artificial evolution. Lecture notes in computer science (vol. 1363, pp. 181–193). Springer.

  • Al-kazemi, B., & Mohan, C. K. (2002). Multi-phase discrete particle swarm optimization. In Proceedings of the fourth international workshop on frontiers in evolutionary algorithms (pp. 1–4). Kinsale, Ireland.

  • Azad, M. A. K., Rocha, A. M. A., & Fernandes, E. M. (2014). Improved binary artificial fish swarm algorithm for the 0–1 multidimensional knapsack problems. Swarm and Evolutionary Computation, 14, 66–75.

    Article  Google Scholar 

  • Bansal, J. C., & Deep, K. (2012). A modified binary particle swarm optimization for knapsack problems. Applied Mathematics and Computation, 218, 11042–11061.

    Article  Google Scholar 

  • Beasley, J. (2022). Orlib-operations research library. Retrieved June 15, 2022, from http://people.brunel.ac.uk/mastjjb/jeb/orlib/files/mknap2.txt

  • Castillo, M., Soto, R., Crawford, B., Castro, C., & Olivares, R. (2021). A knowledge-based hybrid approach on particle swarm optimization using hidden Markov models. Mathematics, 9, 1417.

    Article  Google Scholar 

  • Chellapilla, K., & Fogel, G. B. (1999). Multiple sequence alignment using evolutionary programming. In Proceedings of the IEEE congress on evolutionary computation (pp. 445–452). Washington, DC.

  • Chih, M., Lin, C. J., Chern, M. S., & Ou, T. Y. (2014). Particle swarm optimization with time-varying acceleration coefficients for the multidimensional knapsack problem. Applied Mathematical Modelling, 38, 1338–1350.

    Article  Google Scholar 

  • Cleghorn, C., & Engelbrecht, A. (2014). A generalized theoretical deterministic particle swarm model. Swarm Intelligence, 8, 35–59.

    Article  Google Scholar 

  • Cleghorn, C., & Engelbrecht, A. (2018). Particle swarm stability: A theoretical extension using the non-stagnate distribution assumption. Swarm Intelligence, 12, 1–22.

    Article  Google Scholar 

  • Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6, 58–73.

    Article  Google Scholar 

  • Dong, W. Y., & Zhang, R. R. (2019). Order-3 stability analysis of particle swarm optimization. Information Sciences, 505, 508–520.

  • Engelbrecht, A. P. (2007). Computational intelligence: An introduction. Wiley.

  • Garey, M. R., & Johnson, D. S. (1990). Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman & Co.

  • Gavarraju, L. N. J., Pujari, J. J., & Pavan, K. K. (2016). Sequence alignment by advanced differential evolutionary algorithm. In P. Lakshmi, W. Zhou, & P. Satheesh (Eds.), Computational intelligence techniques in health care. Springer briefs in applied sciences and technology., chap. 6 (pp. 69–81). Springer.

  • Gerwien, M., Voßwinkel, R., & Richter, H. (2021). Algebraic stability analysis of particle swarm optimization using stochastic Lyapunov functions and quantifier elimination. SN Computer Science, 2, 66. https://doi.org/10.1007/s42979-021-00447-5

    Article  Google Scholar 

  • Gonzalo, E. G., & Martìnez, J. L. F. (2014). Convergence and stochastic stability analysis of particle swarm optimization variants with generic parameter distributions. Applied Mathematics and Computation, 249, 286–302.

    Article  Google Scholar 

  • Gopal, A., Sultani, M., & Bansal, J. (2020). On stability analysis of particle swarm optimization algorithm. Arabian Journal for Science and Engineering, 45, 2385–2394.

    Article  Google Scholar 

  • Haddar, B., Khemakhem, M., Rhimi, H., & Chabchoub, H. (2016). A quantum particle swarm optimization for the 0–1 generalized knapsack sharing problem. Natural Computing, 15, 153–164.

    Article  Google Scholar 

  • Homaifar, A., Qi, C. X., & Lai, S. H. (1994). Constrained optimization via genetic algorithms. Simulation, 62, 242–253.

    Article  Google Scholar 

  • Hua, Z. B., **ong, S. W., Sua, Q. H., & Fang, Z. X. (2014). Finite Markov chain analysis of classical differential evolution algorithm. Journal of Computational and Applied Mathematics, 268, 121–134.

    Article  Google Scholar 

  • Hung, Y. H., Lee, C. Y., Tsai, C. H., & Lu, Y. M. (2022). Constrained particle swarm optimization for health maintenance in three-mass resonant servo control system with LuGre friction model. Annals of Operations Research, 311, 131–150.

    Article  Google Scholar 

  • Islam, M. J., Li, X., & Mei, Y. (2017). A time-varying transfer function for balancing the exploration and exploitation ability of a binary PSO. Applied Soft Computing, 59, 182–196.

    Article  Google Scholar 

  • Jiang, M., Luo, Y., & Yang, S. (2007). Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Information Processing Letters, 102, 8–16.

    Article  Google Scholar 

  • Kennedy, J. (2000). Stereoty**: Improving particle swarm performance with cluster analysis. In Proceedings of the IEEE congress on evolutionary computation (pp. 1507–1512). La Jolla, CA, USA.

  • Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks (vol. 4, pp. 1942–1948). Perth, Australia.

  • Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. In Proceedings of the IEEE international conference on systems, man, and cybernetics, 1997, computational cybernetics and simulation (pp. 4104–4108). Orlando, FL, USA.

  • Kessentini, S., & Barchiesi, D. (2017). Convergence criteria for the particle swarm optimization in a full iterative process. In Proceedings of the IEEE congress on evolutionary computation (pp. 876–881). San Sebastian, Spain.

  • Khanesar, M. A., Teshnehlab, M., & Shoorehdeli, M. A. (2007). A novel binary particle swarm optimization. In Proceedings of the Mediterranean conference on control & automation (pp. 1–6). Athens, Greece.

  • Li, N., Sun, D., Zou, T., Qin, Y., & Wei, Y. (2006a). An analysis for a particle’s trajectory of PSO based on difference equation. Chinese Journal of Computers, 29, 2052–2061.

  • Li, N., Sun, D., Zou, T., Qin, Y., & Wei, Y. (2006b). Convergence analysis of particle swarm optimization algorithm. Science Technology and Engineering, 6, 1625–1627.

  • Liu, H., Wang, X., & Tan, G. (2006). Convergence analysis of particle swarm optimization and its improved algorithm based on chaos. Control and Decision, 21, 636–640.

    Google Scholar 

  • Liu, J., Mei, Y., & Li, X. (2016). An analysis of the inertia weight parameter for binary particle swarm optimization. IEEE Transactions on Evolutionary Computation, 20, 666–681.

    Article  Google Scholar 

  • Liu, Q. (2015). Order-2 stability analysis of particle swarm optimization. Evolutionary Computation, 23, 187–216.

    Article  Google Scholar 

  • Martìnez, J. L. F., & Gonzalo, E. G. (2009). Stochastic stability analysis of the linear continuous and discrete PSO models. Swarm Intelligence, 3, 245–273.

    Google Scholar 

  • Martìnez, J. L. F., & Gonzalo, E. G. (2011). Stochastic stability analysis of the linear continuous and discrete PSO models. IEEE Transactions on Evolutionary Computation, 15, 405–423.

    Article  Google Scholar 

  • Mirjalili, S., & Lewis, A. (2013). S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm and Evolutionary Computation, 9, 1–14.

    Article  Google Scholar 

  • Mohais, A., Mendes, R., Ward, C., & Posthoff, C. (2005). Neighborhood restructuring in particle swarm optimization. In Proceedings of the advances in artificial intelligence (pp. 776–785).

  • Mühlenthaler, M., Raß, A., Schmitt, M., & Wanka, R. (2021). Exact Markov chain-based runtime analysis of a discrete particle swarm optimization algorithm on sorting and OneMax. Natural Computing. https://doi.org/10.1007/s11047-021-09856-0

  • Nakama, T. (2012). Markov chain analysis of genetic algorithms applied to fitness functions perturbed concurrently by additive and multiplicative noise. Computational Optimization and Applications, 51, 601–622.

    Article  Google Scholar 

  • NCBI. (2022). National center for biotechnology information. Retrieved June 20, 2022, from https://www.ncbi.nlm.nih.gov/nuccore

  • Nezamabadi-pour, H., Shahrbabaki, M. R., & Maghfoori-Farsangi, M. (2008). Binary particle swarm optimization: Challenges and new solutions. CSI Journal of Computing Science and Engineering, 6, 21–32.

    Google Scholar 

  • Ozcan, E., & Mohan, C. K. (1998). Analysis of a simple particle swarm optimization system. Intelligent Engineering Systems Through Artificial Neural Networks, 8, 253–258.

    Google Scholar 

  • Ozcan, E., & Mohan C., K. (1999) Particle swarm optimization: Surfing the waves. In Proceedings of the IEEE congress on evolutionary computation (pp. 1939–1944). Washington, DC.

  • Pan, F., Li, X., Zhou, Q., Li, W., & Gao, Q. (2013). Analysis of standard particle swarm optimization algorithm based on Markov chain. Acta Automatica Sinica, 39, 281–289.

    Article  Google Scholar 

  • Parrott, D., & Li, X. (2006). Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Transactions on Evolutionary Computation, 10, 440–458.

    Article  Google Scholar 

  • Peng, H., Wu, Z., Shao, P., & Deng, C. (2016). Dichotomous binary differential evolution for knapsack problems. Mathematical Problems in Engineering, 1, 1–12.

    Google Scholar 

  • Poli, R. (2009). Mean and variance of the sampling distribution of particle swarm optimizers during stagnation. IEEE Transactions on Evolutionary Computation, 13, 712–721.

    Article  Google Scholar 

  • Pookpunt, S., & Ongsakul, W. (2013). Optimal placement of wind turbines within wind farm using binary particle swarm optimization with timevarying acceleration coefficients. Renewable Energy, 55, 266–276.

    Article  Google Scholar 

  • Qian, W., & Li, M. (2018). Convergence analysis of standard particle swarm optimization algorithm and its improvement. Soft Computing, 22, 4047–4070.

    Article  Google Scholar 

  • Rajamohana, S., & Umamaheswari, K. (2018). Hybrid approach of improved binary particle swarm optimization and shuffled frog lea** for feature selection. Computers & Electrical Engineering, 67, 497–508.

    Article  Google Scholar 

  • Rapaic, M. R., & Kanovic, Z. (2009). Time varying PSO—convergence analysis, convergence-related parameterization and new parameter adjustment schemes. Information Processing Letters, 109, 548–552.

    Article  Google Scholar 

  • Ren, Z., Wang, J., & Gao, Y. (2011). The global convergence analysis of particle swarm optimization algorithm based on Markov chain. Control Theory & Applications, 28, 462–466.

    Google Scholar 

  • Senyu, S., & Toyada, Y. (1968). An approach to linear programming with 0–1 variables. Management Science, 15, B196–B207.

    Article  Google Scholar 

  • Shi, W. (1979). A branch and bound method for the multiconstraint zero-one knapsack problem. Journal of the Operational Research Society, 30, 369–378.

    Article  Google Scholar 

  • Shi, Y., & Eberhart, R. C. (1999). Empirical study of particle swarm optimization. In Proceedings of the IEEE congress on evolutionary computation (pp. 1945–1950). Washington, DC.

  • Sudholt, D., & Witt, C. (2010). Runtime analysis of a binary particle swarm optimizer. Theoretical Computer Science, 411, 2084–2100.

    Article  Google Scholar 

  • Suzuki, J. (1995). A Markov chain analysis on simple genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 25, 655–659.

    Article  Google Scholar 

  • Tian, D. P. (2013). A review of convergence analysis of particle swarm optimization. International Journal of Grid and Distributed Computing, 6, 117–128.

    Article  Google Scholar 

  • Unler, A., & Murat, A. (2010). A discrete particle swarm optimization method for feature selection in binary classification problems. European Journal of Operational Research, 206, 528–539.

    Article  Google Scholar 

  • Van den Bergh, F., & Engelbrecht, A. (2006). A study of particle swarm optimization particle trajectories. Information Sciences, 176, 937–971.

    Article  Google Scholar 

  • Watterson, G. A. (1961). Markov chains with absorbing states: A genetic example. The Annals of Mathematical Statistics, 32, 716–729.

    Article  Google Scholar 

  • Weingartner, H., & Ness, D. (1967). Methods for the solution of the multi-dimensional 0/1 knapsack problem. Operations Research, 15, 83–103.

    Article  Google Scholar 

  • Wu, X., Li, R., Chu, C. H., Amoasi, R., & Liu, S. (2022). Managing pharmaceuticals delivery service using a hybrid particle swarm intelligence approach. Annals of Operations Research, 308, 653–684.

    Article  Google Scholar 

  • Yang, S., Wang, M., & Jiao, L. (2004). A quantum particle swarm optimization. In Proceedings of the IEEE congress on evolutionary computation (pp. 320–324). Portland, OR, USA.

  • Yao, B., Yu, B., Hu, P., & Zhang, M. (2016). An improved particle swarm optimization for carton heterogeneous vehicle routing problem with a collection depot. Annals of Operations Research, 242, 303–320.

    Article  Google Scholar 

  • Yassin, I. M., Taib, M. N., Adnan, R., Salleh, M. K. M., & Hamzah, M. K. (2012). Effect of swarm size parameter on binary particle swarm optimization-based NARX structure selection. In IEEE symposium on industrial electronics and applications (pp. 219–223). Bandung, Indonesia.

  • Ye, H., Luo, W., & Li, Z. (2013). Convergence analysis of particle swarm optimizer and its improved algorithm based on velocity differential evolution. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2013/384125

  • Zhang, L., Yu, H., Chen, D., & Hu, S. (2004). Analysis and improvement of particle swarm optimization algorithm. Information and Control, 33, 513–517.

    Google Scholar 

  • Zhou, Z., Duan, H., & Shi, Y. (2016). Convergence analysis of brain storm optimization algorithm. In Proceedings of the IEEE congress on evolutionary computation (pp. 3747–3752). Vancouver, BC, Canada.

  • Zou, D., Gao, L., Li, S., & Wu, J. (2011). Solving 0–1 knapsack problem by a novel global harmony search algorithm. Applied Soft Computing, 11, 1556–1564.

    Article  Google Scholar 

Download references

Funding

This work has been supported by the Tunisian Ministry of Higher Education and Scientific Research (21PEJC D1P14 project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameh Kessentini.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kessentini, S. Analysis and improvement of the binary particle swarm optimization. Ann Oper Res (2024). https://doi.org/10.1007/s10479-024-06112-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10479-024-06112-3

Keywords

Navigation