Log in

Entire solutions of Lotka-Volterra competition systems with nonlocal dispersal

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

This paper is mainly concerned with entire solutions of the following two-species Lotka-Volterra competition system with nonlocal (convolution) dispersals:

$\left\{{\matrix{{{u_t} = k * u - u + u(1 - u - av),} \hfill & {x \in \mathbb{R},\,\,t \in \mathbb{R},} \hfill \cr {{v_t} = d(k * v - v) + rv(1 - v - bu),} \hfill & {x \in \mathbb{R},\,\,t \in \mathbb{R}.} \hfill \cr}} \right.$
((0.1))

Here a ≠ 1, b ≠ 1, d, and r are positive constants. By studying the eigenvalue problem of (0.1) linearized at (ϕc(ξ), 0), we construct a pair of super- and sub-solutions for (0.1), and then establish the existence of entire solutions originating from (ϕc(ξ), 0) as t → −∞, where ϕc denotes the traveling wave solution of the nonlocal Fisher-KPP equation ut = k * uu + u (1 − u). Moreover, we give a detailed description on the long-time behavior of such entire solutions as t → ∞. Compared to the known works on the Lotka-Volterra competition system with classical diffusions, this paper overcomes many difficulties due to the appearance of nonlocal dispersal operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao X, Li W T, Shen W. Traveling wave solutions of Lotka-Volterra competition systems with nonlocal dispersal in periodic habitats. J Differential Equations, 2016, 260: 8590–8637

    Article  MathSciNet  MATH  Google Scholar 

  2. Carr J, Chmaj A. Uniqueness of travelling waves for nonlocal monostable equations. Proc Amer Math Soc, 2004, 132: 2433–2439

    Article  MathSciNet  MATH  Google Scholar 

  3. Carrère C. Spreading speeds for a two species competition-diffusion system. J Differential Equations, 2018, 264: 2133–2156

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen X, Guo J. Existence and uniqueness of entire solutions for a reaction-diffusion equation. J Differential Equations, 2005, 212: 62–84

    Article  MathSciNet  MATH  Google Scholar 

  5. Cosner C, Lazer A. Stable coexistence states in the Volterra-Lotka competition model wirh diffusion. SIAM J Appl Math, 1984, 44: 1112–1132

    Article  MathSciNet  MATH  Google Scholar 

  6. Coville J. On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators. J Differential Equations, 2010, 249: 2921–2953

    Article  MathSciNet  MATH  Google Scholar 

  7. Dunbar S. Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in ℝ4. Trans Amer Math Soc, 1984, 286: 557–594

    MathSciNet  MATH  Google Scholar 

  8. Du L, Li W T, Wang J. Asymptotic behavior of traveling fronts and entire solutions for a periodic bistable competition-diffusion system. J Differential Equations, 2018, 265: 6210–6250

    Article  MathSciNet  MATH  Google Scholar 

  9. Du L, Li W T, Wu S. Pulsating fronts and front-like entire solutions for a reaction-advection-diffusion competition model in a periodic habitat. J Differential Equations, 2019, 266: 8419–8458

    Article  MathSciNet  MATH  Google Scholar 

  10. Ellison W, Ellison F. Prime Numbers. New York: Wiley, 1985

    MATH  Google Scholar 

  11. Fang J, Yu X, Zhao X. Traveling waves and spreading speeds for time-space periodic monotone systems. J Funct Anal, 2017, 272: 4222–4262

    Article  MathSciNet  MATH  Google Scholar 

  12. Fang J, Zhao X. Traveling waves for monotone semiflows with weak compactness. SIAM J Math Anal, 2014, 46: 3678–3704

    Article  MathSciNet  MATH  Google Scholar 

  13. Fei N, Carr J. Existence of travelling waves with their minimal speed for a diffusing Lotka-Volterra system. Nonlinear Anal Real World Appl, 2003, 4: 503–524

    Article  MathSciNet  MATH  Google Scholar 

  14. Fisher R. The wave of advance of advantageous genes. Ann of Eugenics, 1937, 7: 355–369

    Article  MATH  Google Scholar 

  15. Girardin L, Lam K. Invasion of open space by two competitors: spreading properties of monostable two-species competition-diffusion systems. Proc Lond Math Soc, 2019, 119: 1279–1335

    Article  MathSciNet  MATH  Google Scholar 

  16. Gui C, Lou Y. Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model. Comm Pure Appl Math, 1994, 47: 1571–1594

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo J, Morita Y. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete Contin Dyn Syst, 2005, 12: 193–212

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo J, Wu C. Entire solutions for a two-component competition system in a lattice. Tohoku Math J, 2010, 62: 17–28

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo J, Wu C. Traveling wave front for a two-component lattice dynamical system arising in competition models. J Differential Equations, 2012, 252: 4357–4391

    Article  MathSciNet  MATH  Google Scholar 

  20. Hamel F, Nadirashvili N. Entire solution of the KPP eqution. Comm Pure Appl Math, 1999, 52: 1255–1276

    Article  MathSciNet  MATH  Google Scholar 

  21. Hamel F, Nadirashvili N. Travelling fronts and entire solutions of the Fisher-KPP equation in ℝN. Arch Rational Mech Anal, 2001, 157: 91–163

    Article  MathSciNet  MATH  Google Scholar 

  22. Hao Y X, Li W T, Wang J B. Propagation dynamics of Lotka-Volterra competition systems with asymmetric dispersal in periodic habitats. J Differential Equations, 2021, 300: 185–225

    Article  MathSciNet  MATH  Google Scholar 

  23. Hosono Y. Singular perturbation analysis of travelling waves of diffusive Lotka-Volterra competition models//Numerical and Applied Mathematics, Part II. Basel: Baltzer, 1989: 687–692

    Google Scholar 

  24. Hou X, Leung A. Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics. Nonlinear Anal Real World Appl, 2008, 9: 2196–2213

    Article  MathSciNet  MATH  Google Scholar 

  25. Hou X, Wang B, Zhang Z. The mutual inclusion in a nonlocal competitive Lotka Volterra system. Japan J Indust Appl Math, 2014, 31: 87–110

    Article  MathSciNet  MATH  Google Scholar 

  26. Hutson V, Lou Y, Mischaikow K. Convergence in competition models with small diffusion coefficients. J Differential Equations, 2005, 211: 135–161

    Article  MathSciNet  MATH  Google Scholar 

  27. Iida M, Muramatsu T, Ninomiya H, et al. Diffusion-induced extinction of a superior species in a competition system. Japan J Indust Appl Math, 1998, 15: 233–252

    Article  MathSciNet  MATH  Google Scholar 

  28. Kolmogorov A N, Petrovskii I G, Piskunov N S. Study of a diffusion equation that is related to the growth of a quality of matter, and its application to a biological problem. Byul Mosk Gos Univ Ser A: Mat Mekh, 1937, 1: 1–26

    Google Scholar 

  29. Lam K, Salako R, Wu Q. Entire solutions of diffusive Lotka-Volterra system. J Differential Equations, 2020, 269: 10758–10791

    Article  MathSciNet  MATH  Google Scholar 

  30. Lewis M, Li B, Weinberger H. Spreading speeds and linear determinacy for two-species competition models. J Math Biol, 2002, 269: 219–233

    Article  MathSciNet  MATH  Google Scholar 

  31. Li W T, Wang J B, Zhang L. Entire solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats. J Differential Equations, 2016, 261: 2472–2501

    Article  MathSciNet  MATH  Google Scholar 

  32. Li W T, Zhang L, Zhang G B. Invasion entire solutions in a competition system with nonlocal dispersal. Discrete Contin Dyn Syst, 2015, 35: 1531–1560

    Article  MathSciNet  MATH  Google Scholar 

  33. Liang X, Zhao X. Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm Pure Appl Math, 2007, 60: 1–40

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu Q, Liu S, Lam K. Asymptotic spreading of interacting species with multiple fronts I: A geometric optics approach. Discrete Contin Dyn Syst, 2020, 40: 3683–3714

    Article  MathSciNet  MATH  Google Scholar 

  35. Lou Y, Zhao X, Zhou P. Global dynamics of a Lotka-Volterra competition-diffusion-advection system in heterogeneous environments. J Math Pures Appl, 2019, 121: 47–82

    Article  MathSciNet  MATH  Google Scholar 

  36. Lv G. Asymptotic behavior of traveling wave fronts and entire solutions for a nonlocal monostable equation. Nonlinear Anal, 2010, 72: 3659–3668

    Article  MathSciNet  MATH  Google Scholar 

  37. Morita Y, Ninomiya H. Entire solutions with merging fronts to reaction-diffusion equations. J Dynam Differential Equations, 2006, 18: 841–861

    Article  MathSciNet  MATH  Google Scholar 

  38. Morita Y, Tachibana K. An entire solution to the Lotka-Volterra competition-diffusion equations. SIAM J Math Anal, 2009, 40: 2217–2240

    Article  MathSciNet  MATH  Google Scholar 

  39. Pan S, Lin G. Invasion traveling wave solutions of a competition system with dispersal. Bound Value Probl, 2012: 1–11

  40. Peng R, Wu C, Zhou M. Sharp estimates for spreading speed of the Lotka-Volterra diffusion system with strong competition. Ann Inst H Poincaré C Anal Non Linéaire, 2021, 38: 507–547 [41] Schumacher K. Travelling-front solutions for integro-differential equations, I. J Reine Angew Math, 1980, 316: 54–70

    Article  MathSciNet  MATH  Google Scholar 

  41. Sun Y, Zhang L, Li W T, et al. Entire solutions in nonlocal monostable equations: asymmetric case. Commun Pure Appl Anal, 2019, 18: 1049–1072

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang J B, Li W T, Dong F D, et al. Recent developments on spatial propagation for diffusion equations in shifting environments. Discrete Contin Dyn Syst Ser B, 2022, 27: 5101–5127

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang J B, Wu C. Forced waves and gap formations for a Lotka-Volterra competition model with nonlocal dispersal and shifting habitats. Nonlinear Anal Real World Appl, 2021, 58: 103208

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang M, Lv G. Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delays. Nonlinearity, 2010, 23: 1609–1630

    Article  MathSciNet  MATH  Google Scholar 

  45. Widder D V. The Laplace Transform. Princeton, NJ: Princeton University Press, 1946

    Google Scholar 

  46. Wu S L, Hsu C H. Entire solutions with merging fronts to a bistable periodic lattice dynamical system. Discrete Contin Dyn Syst, 2016, 36: 2329–2346

    Article  MathSciNet  MATH  Google Scholar 

  47. Wu S L, Hsu C H. Existence of entire solutions for delayed monostable epidemic models. Trans Amer Math Soc, 2016, 368: 6033–6062

    Article  MathSciNet  MATH  Google Scholar 

  48. Zeng X, Liu L, **e W. Existence and uniqueness of the positive steady state solution for a Lotka-Volterra predator-prey model with a crowding term. Acta Math Sci, 2020, 40B: 1961–1980

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang G B, Ma R, Li X. Traveling waves for a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete Contin Dyn Syst Ser B, 2018, 23: 587–608

    MathSciNet  MATH  Google Scholar 

  50. Zhang G B, Zhao X Q. Propagation phenomena for a two-species Lotka-Volterra strong competition system with nonlocal dispersal. Calc Var Partial Differential Equations, 2020, 59: Art 10

  51. Zhang Q, Zhang G B. Front-like entire solutions for a Lotka-Volterra weak competition system with nonlocal dispersal. J Dyn Control Syst, 2021, 27: 133–151

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhao G, Ruan S. Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion. J Math Pures Appl, 2011, 95: 627–671

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wantong Li.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Research of W.-T. Li was partially supported by the NSF of China (12271226), the NSF of Gansu Province of China (21JR7RA537) and the Fundamental Research Funds for the Central Universities (lzujbky-2022-sp07); research of J.-B. Wang was partially supported by the Basic and Applied Basic Research Foundation of Guangdong Province (2023A1515011757) and the National Natural Science Foundation of China (12271494), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (G1323523061) and research of W.-B. Xu was partially supported by the NSF of China (12201434).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Y., Li, W., Wang, J. et al. Entire solutions of Lotka-Volterra competition systems with nonlocal dispersal. Acta Math Sci 43, 2347–2376 (2023). https://doi.org/10.1007/s10473-023-0602-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-023-0602-9

Key words

2010 MR Subject Classification

Navigation