Log in

Almost Sure Global Well-Posedness for the Fourth-Order Nonlinear Schrödinger Equation with Large Initial Data

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

We consider the fourth-order nonlinear Schrödinger equation (4NLS)

$$({\rm{i}}{\partial _t} + \varepsilon \Delta + {\Delta ^2})u = {c_1}{u^m} + {c_2}(\partial u){u^{m - 1}} + {c_3}{(\partial u)^2}{u^{m - 2}},$$

and establish the conditional almost sure global well-posedness for random initial data in \({H^s}({\mathbb{R}^d})\) for s ∈ (sc − 1/2, sc], when d ≥ 3 and m ≥ 5, where sc:= d/2 − 2/(m − 1) is the scaling critical regularity of 4NLS with the second order derivative nonlinearities. Our proof relies on the nonlinear estimates in a new M-norm and the stability theory in the probabilistic setting. Similar supercritical global well-posedness results also hold for d = 2, m ≥ 4 and d ≥ 3, 3 ≤ m < 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Artzi M, Koch H, Saut J C. Dispersion estimates for fourth order Schrödinger equations. C R Acad Sci Paris Sér I Math, 2000, 330(2): 87–92

    Article  MathSciNet  MATH  Google Scholar 

  2. Bényi Á, Oh T, Pocovnicu O. Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS//Balan R, Begue M, Benedetto J, et al. Excursions in Harmonic Analysis, Volume 4. Applied and Numerical Harmonic Analysis. Switzerland: Birkhäuser, 2015: 3–25

    Chapter  Google Scholar 

  3. Bényi Á, Oh T, Pocovnicu O. On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on \({\mathbb{R}^d},\,\,d \ge 3\). Trans Amer Math Soc Ser B, 2015, 2(1): 1–50

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain J. Periodic nonlinear Schröodinger equation and invariant measures. Comm Math Phys, 1994, 166(1): 1–26

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain J. Invariant measures for the 2D-defocusing nonlinear Schröodinger equation. Comm Math Phys, 1996, 176(2): 421–445

    Article  MathSciNet  MATH  Google Scholar 

  6. Bringmann B. Almost sure scattering for the energy critical nonlinear wave equation. Amer J Math, 2021, 143(6): 1931–1982

    Article  MathSciNet  MATH  Google Scholar 

  7. Burq N, Tzvetkov N. Random data Cauchy theory for supercritical wave equations. I. Local theory. Invent Math, 2008, 173(3): 449–475

    Article  MathSciNet  MATH  Google Scholar 

  8. Burq N, Tzvetkov N. Random data Cauchy theory for supercritical wave equations. II. A global existence result. Invent Math, 2008, 173(3): 477–496

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen M, Zhang S. Random data cauchy problem for the fourth order Schrödinger equation with the second order derivative nonlinearities. Nonlinear Anal, 2020, 190: Art 111608

  10. Christ F M, Weinstein M I. Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation. J Funct Anal, 2013, 16(1): 1–30

    MathSciNet  Google Scholar 

  11. Da Prato G, Debussche A. Two-dimensional Navier-Stokes equations driven by a space-time white noise. J Funct Anal, 2002, 196: 180–210

    Article  MathSciNet  MATH  Google Scholar 

  12. Deng Y, Nahmod A, Yue H. Invariant Gibbs measures and global strong solutions for nonlinear Schrödinger equations in dimension two. ar**v: 1910.08492

  13. Deng Y, Nahmod A, Yue H. Random tensors, propagation of randomness, and nonlinear dispersive equations. Invent Math, 2022, 228(2): 539–686

    Article  MathSciNet  MATH  Google Scholar 

  14. Dinh V D. Well-posedness, regularity and ill-posedness for the nonlinear fourth-order Schröodinger equation. Bull Belg Math Soc Simon Stevin, 2018, 25: 415–437

    Article  MathSciNet  MATH  Google Scholar 

  15. Dodson B, Lührmann J, Mendelson D. Almost sure scattering for the 4D energy-critical defocusing nonlinear wave equation with radial data. Amer J Math, 2020, 142(2): 475–504

    Article  MathSciNet  MATH  Google Scholar 

  16. Dodson B, Lührmann J, Mendelson D. Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation. Adv Math, 2019, 347: 619–676

    Article  MathSciNet  MATH  Google Scholar 

  17. Dysthe K B. Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proc R Soc Lond A, 1979, 369(1736): 105–114

    Article  MATH  Google Scholar 

  18. Hadac M, Herr S, Koch H. Well-posedness and scattering for the KP-II equation in a critical space. Ann Inst H Poincaré Anal Non Linéaire, 2009, 26(3): 917–941

    Article  MathSciNet  MATH  Google Scholar 

  19. Herr S, Tataru D, Tzvetkov N. Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in \({H^1}({\mathbb{T}^3})\). Duke Math J, 2011, 159(2): 329–349

    Article  MathSciNet  MATH  Google Scholar 

  20. Hirayama H, Okamoto M. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete Contin Dyn Syst, 2016, 36(12): 6943–6974

    Article  MathSciNet  MATH  Google Scholar 

  21. Huo Z H, Jia Y L. A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the vortex filament. Comm Partial Differential Equations, 2007, 32(10): 1493–1510

    Article  MathSciNet  MATH  Google Scholar 

  22. Ionescu A D, Pausader B. Global well-posedness of the energy-critical defocusing NLS on \(\mathbb{R} \times {\mathbb{T}^3}\). Comm Math Phys, 2012, 312(3): 781–831

    Article  MathSciNet  MATH  Google Scholar 

  23. Ilan B, Fibich G, Papanicolaou G. Self-focusing with fourth-order dispersion. SIAM J Appl Math, 2002, 62(4): 1437–1462

    Article  MathSciNet  MATH  Google Scholar 

  24. Karpman V I. Stabilization of soliton instabilities by higher-order dispersion: fourth-order nonlinear Schrödinger-type equations. Physical Review E, 1996, 53(2): 1336–1339

    Article  Google Scholar 

  25. Karpman V I, Shagalov A G. Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion. Phys D, 2000, 144(1/2): 194–210

    Article  MathSciNet  MATH  Google Scholar 

  26. Kenig C, Mendelson D. The focusing energy-critical nonlinear wave equation with random initial data. Int Math Res Not, 2021, (19): 14508–14615

  27. Killip R, Murphy J, Visan M. Almost sure scattering for the energy-critical NLS with radial data below \({H^1}({\mathbb{R}^4})\). Comm Partial Differential Equations, 2019, 44(1): 51–71

    Article  MathSciNet  MATH  Google Scholar 

  28. Lührmann J, Mendelson D. Random data Cauchy theory for nonlinear wave equations of power-type on \({\mathbb{R}^3}\). Comm Partial Differential Equations, 2014, 39(12): 2262–2283

    Article  MathSciNet  MATH  Google Scholar 

  29. Mendelson D. Symplectic non-squeezing for the cubic nonlinear Klein-Gordon equation on \({\mathbb{T}^3}\). J Funct Anal, 2017, 272(7): 3019–3092

    Article  MathSciNet  MATH  Google Scholar 

  30. Pausader B. Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case. Dyn Partial Differ Equ, 2007, 4(3): 197–225

    Article  MathSciNet  MATH  Google Scholar 

  31. Pausader B. The cubic fourth-order Schrödinger equation. J Funct Anal, 2009, 256(8): 2473–2517

    Article  MathSciNet  MATH  Google Scholar 

  32. Pocovnicu O. Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on \({\mathbb{R}^d}\), d = 4 and 5. J Eur Math Soc, 2017, 19(8): 2521–2575

    Article  MathSciNet  MATH  Google Scholar 

  33. Ren Y Y, Li Y S, Wei Y. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Commun Pure Appl Anal, 2018, 17(2): 487–504

    Article  MathSciNet  MATH  Google Scholar 

  34. Ruzhansky M, Wang B X, Zhang H. Global well-posedness and scattering for the fourth order nonlinear Schrödinger equations with small data in modulation and Sobolev spaces. J Math. Pures Appl, 2016, 105(1): 31–65

    Article  MathSciNet  MATH  Google Scholar 

  35. Stein E M. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton, NJ: Princeton University Press, 1993

    MATH  Google Scholar 

  36. Tao T. Nonlinear dispersive equations. Local and global analysis. CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; Providence, RI: American Mathematical Society, 2006

    Book  MATH  Google Scholar 

  37. Zhang S, Xu S P. The probabilistic Cauchy problem for the fourth order Schrödinger equation with special derivative nonlinearities. Commun Pure Appl Anal, 2020, 19(6): 3367–3385

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Zhang.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Chen’s research was supported by the National Natural Science Foundation of China (12001236), the Natural Science Foundation of Guangdong Province (2020A1515110494).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Zhang, S. Almost Sure Global Well-Posedness for the Fourth-Order Nonlinear Schrödinger Equation with Large Initial Data. Acta Math Sci 43, 2215–2233 (2023). https://doi.org/10.1007/s10473-023-0517-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-023-0517-5

Key words

2010 MR Subject Classification

Navigation