Log in

Optimal control of a population dynamics model with hysteresis

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

This paper addresses a nonlinear partial differential control system arising in population dynamics. The system consist of three diffusion equations describing the evolutions of three biological species: prey, predator, and food for the prey or vegetation. The equation for the food density incorporates a hysteresis operator of generalized stop type accounting for underlying hysteresis effects occurring in the dynamical process. We study the problem of minimization of a given integral cost functional over solutions of the above system. The set-valued map** defining the control constraint is state-dependent and its values are nonconvex as is the cost integrand as a function of the control variable. Some relaxation-type results for the minimization problem are obtained and the existence of a nearly optimal solution is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Visintin A. Differential Models of Hysteresis. Appl Math Sci 111. Berlin: Springer-Verlag, 1994

    Book  Google Scholar 

  2. Colli P, Kenmochi N, Kubo M, A phase field model with temperature dependent constraint. J Math Anal Appl, 2001, 256: 668–685

    Article  MathSciNet  Google Scholar 

  3. Krejčí P, Sprekels J, Stefanelli U, Phase-field models with hysteresis in one-dimensional thermoviscoplasticity. SIAM J Math Anal, 2002, 34: 409–434

    Article  MathSciNet  Google Scholar 

  4. Giorgi C, Phase-field models for transition phenomena in materials with hysteresis. Discrete Contin Dyn Syst Ser S, 2015, 8(4): 693–722

    MathSciNet  MATH  Google Scholar 

  5. Helmers M, Herrmann M, Hysteresis and phase transitions in a lattice regularization of an ill-posed forward-backward diffusion equation. Arch Ration Mech Anal, 2018, 230(1): 231–275

    Article  MathSciNet  Google Scholar 

  6. Corli A, Fan H, Two-phase flow in porous media with hysteresis. J Differential Equations, 2018, 265(4): 1156–1190

    Article  MathSciNet  Google Scholar 

  7. Krejčí P, Timoshin S A, Tolstonogov A A, Relaxation and optimisation of a phase-field control system with hysteresis. Int J Control, 2018, 91(1): 85–100

    Article  MathSciNet  Google Scholar 

  8. Kubo M, A filtration model with hysteresis. J Differential Equations, 2004, 201: 75–98

    Article  MathSciNet  Google Scholar 

  9. Krejčí P, O’Kane J P, Pokrovskii A, Rachinskii D, Properties of solutions to a class of differential models incorporating Preisach hysteresis operator. Physica D, 2012, 241: 2010–2028

    Article  MathSciNet  Google Scholar 

  10. Albers B, Modeling the hysteretic behavior of the capillary pressure in partially saturated porous media: a review. Acta Mech, 2014, 225(8): 2163–2189

    Article  MathSciNet  Google Scholar 

  11. Detmann B, Krejčí P, Rocca E, Solvability of an unsaturated porous media flow problem with thermomechanical interaction. SIAM J Math Anal, 2016, 48(6): 4175–4201

    Article  MathSciNet  Google Scholar 

  12. Krejčí P, Timoshin S A, Coupled ODEs control system with unbounded hysteresis region. SIAM J Control Optim, 2016, 54(4): 1934–1949

    Article  MathSciNet  Google Scholar 

  13. Cahlon B, Schmidt D, Shillor M, Zou X, Analysis of thermostat models. Eur J Appl Math, 1997, 8(5): 437–455

    Article  MathSciNet  Google Scholar 

  14. Kopfová J, Kopf T, Differential equations, hysteresis, and time delay. Z Angew Math Phys, 2002, 53(4): 676–691

    Article  MathSciNet  Google Scholar 

  15. Logemann H, Ryan E P, Shvartsman I, A class of differential-delay systems with hysteresis: Asymptotic behaviour of solutions. Nonlinear Anal, 2008, 69(1): 363–391

    Article  MathSciNet  Google Scholar 

  16. Gurevich P, Ron E, Stability of periodic solutions for hysteresis-delay differential equations. J Dynam Differential Equations, 2019, 31(4): 1873–1920

    Article  MathSciNet  Google Scholar 

  17. Timoshin S A, Bang-bang control of a thermostat with nonconstant cooling power. ESAIM Control Optim Calc Var, 2018, 24(2): 709–719

    Article  MathSciNet  Google Scholar 

  18. Aiki T, Kumazaki K, Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process. Phys B, 2012, 407: 1424–1426

    Article  Google Scholar 

  19. Aiki T, Kumazaki K, Uniqueness of solutions to a mathematical model describing moisture transport in concrete materials. Netw Heterog Media, 2014, 9(4): 683–707

    Article  MathSciNet  Google Scholar 

  20. Jensen M M, Johannesson B, Geiker M R, A numerical comparison of ionic multi-species diffusion with and without sorption hysteresis for cement-based materials. Transp Porous Media, 2015, 107(1): 27–47

    Article  MathSciNet  Google Scholar 

  21. Aiki T, Timoshin S A, Existence and uniqueness for a concrete carbonation process with hysteresis. J Math Anal Appl, 2017, 449(2): 1502–1519

    Article  MathSciNet  Google Scholar 

  22. Timoshin S A, Aiki T, Extreme solutions in control of moisture transport in concrete carbonation. Nonlinear Anal Real World Appl, 2019, 47: 446–459

    Article  MathSciNet  Google Scholar 

  23. Aiki T, Minchev E, A prey-predator model with hysteresis effect. SIAM J Math Anal, 2005, 36(6): 2020–2032

    Article  MathSciNet  Google Scholar 

  24. Zheng J, Wang Y, Well-posedness for a class of biological diffusion models with hysteresis effect. Z Angew Math Phys, 2015, 66(3): 771–783

    Article  MathSciNet  Google Scholar 

  25. Wang Y, Zheng J, Periodic solutions to a class of biological diffusion models with hysteresis effect. Nonlinear Anal Real World Appl, 2016, 27: 297–311

    Article  MathSciNet  Google Scholar 

  26. Timoshin S A, Aiki T, Control of biological models with hysteresis. Systems Control Lett, 2019, 128: 41–45

    Article  MathSciNet  Google Scholar 

  27. Brokate M. Optimal control of systems described by ordinary differential equations with nonlinear characteristics of hysteresis type, [I]. Automat Remote Control, 1991, 52(12): part 1, 1639–1681

    MathSciNet  MATH  Google Scholar 

  28. Brokate M. Optimal control of systems described by ordinary differential equations with nonlinear characteristics of hysteresis type, [II]. Automat Remote Control, 1992, 53(1): part 1, 1–33

    MathSciNet  MATH  Google Scholar 

  29. Brézis H. Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. Amsterdam: North-Holland, 1973

    MATH  Google Scholar 

  30. Mosco U, Convergence of convex sets and of solutions of variational inequalities. Adv Math, 1969, 3:510–585

    Article  MathSciNet  Google Scholar 

  31. Kenmochi N, Solvability of nonlinear evolution equations with time-dependent constraints and applications. Bull Fac Educ, Chiba Univ, Part 2, 1981, 30: 1–87

    MATH  Google Scholar 

  32. Hiai F, Umegaki H, Integrals, conditional expectations, and martingales of multivalued functions. J Multivariate Anal, 1977, 7: 149–182

    Article  MathSciNet  Google Scholar 

  33. De Blasi F S, Pianigiani G, Tolstonogov A A, A Bogolyubov-type theorem with a nonconvex constraint in Banach spaces. SIAM J Control Optim, 2004, 43(2): 466–476

    Article  MathSciNet  Google Scholar 

  34. Phan Van Chuong, A density theorem with an application in relaxation of non-convex-valued differential equations. J Math Anal Appl, 1987, 124: 1–14

    Article  MathSciNet  Google Scholar 

  35. Fryszkowski A, Continuous selections for a class of nonconvex multivalued maps. Studia Math, 1983, 76: 163–174

    Article  MathSciNet  Google Scholar 

  36. Balder E J, Necessary and sufficient conditions for L1-strong-weak lower semi-continuity of integral functional. Nonlinear Anal, 1987, 11(12): 1399–1404

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Timoshin.

Additional information

This work was supported by National Natural Science Foundation of China (12071165 and 62076104), Natural Science Foundation of Fujian Province (2020J01072), Program for Innovative Research Team in Science and Technology in Fujian Province University, Quanzhou High-Level Talents Support Plan (2017ZT012), and by Scientific Research Funds of Huaqiao University (605-50Y19017, 605-50Y14040). The research of the second author was also supported by Ministry of Science and Higher Education of Russian Federation (075-15-2020-787, large scientific project “Fundamentals, methods and technologies for digital monitoring and forecasting of the environmental situation on the Baikal natural territory”).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Timoshin, S.A. Optimal control of a population dynamics model with hysteresis. Acta Math Sci 42, 283–298 (2022). https://doi.org/10.1007/s10473-022-0116-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-022-0116-x

Key words

2010 MR Subject Classification

Navigation