Log in

On a hypergraph probabilistic graphical model

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

We propose a directed acyclic hypergraph framework for a probabilistic graphical model that we call Bayesian hypergraphs. The space of directed acyclic hypergraphs is much larger than the space of chain graphs. Hence Bayesian hypergraphs can model much finer factorizations than Bayesian networks or LWF chain graphs and provide simpler and more computationally efficient procedures for factorizations and interventions. Bayesian hypergraphs also allow a modeler to represent causal patterns of interaction such as Noisy-OR graphically (without additional annotations). We introduce global, local and pairwise Markov properties of Bayesian hypergraphs and prove under which conditions they are equivalent. We also extend the causal interpretation of LWF chain graphs to Bayesian hypergraphs and provide corresponding formulas and a graphical criterion for intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, S.A., Madigan, D., Perlman, M.D.: Alternative Markov properties for chain graphs. Scand. J. Stat. 28, 33–85 (2001)

    Article  MathSciNet  Google Scholar 

  2. Bloemeke, M., Valtorta, M.: A hybrid algorithm to compute marginal and joint beliefs in bayesian networks and its complexity. In: Cooper, G. F., Moral, S. (eds.) Uncertainty in Artificial Intelligence: Proceedings of the Fourteenth Conference, pp 16–23. Morgan-Kaufmann, San Francisco (1998)

  3. Cox, D.R., Wermuth, N.: Linear dependencies represented by chain graphs (with discussion). Statist. Sci. 8, 204–218 (1993). 247–277

    Article  MathSciNet  Google Scholar 

  4. Cox, D.R., Wermuth, N.: Multivariate Dependencies. Chapman & Hall, London (1996)

    MATH  Google Scholar 

  5. Darroch, J.N., Lauritzen, S.L., Speed, T.P.: Markov fields and log-linear interaction models for contingency tables. Ann. Statist. 8, 522–539 (1980)

    Article  MathSciNet  Google Scholar 

  6. Dawid, A.P.: Conditional independence for statistical operations. Ann. Statist. 8, 598–617 (1980)

    Article  MathSciNet  Google Scholar 

  7. Drton, M.: Discrete chain graph models. Bernoulli 15, 736–753 (2009)

    Article  MathSciNet  Google Scholar 

  8. Frydenberg, M.: The chain graph Markov property. Scand. J. Statist. 17, 333–353 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Ghosh, J.K., Valtorta, M.: Building a bayesian network model of heart disease. In: Proceedings of the 38th Annual ACM Southeastern Conference, Clemson, South Carolina, pp. 239–240. (Extended version at https://cse.sc.edu/mgv/reports/tr1999-11.pdf) (2000)

  10. Hammersley, J.M., Clifford, P.E: Markov fields on finite graphs and lattices. Unpublished manuscript (1971)

  11. Isham, V.: An introduction to spatial point processes and Markov random fields. Internat. Statist. Rev. 49, 21–43 (1981)

    Article  MathSciNet  Google Scholar 

  12. Hajek, P., Havranek, T., Jirousek, R.: Uncertain Information Processing In Expert Systems. CRC Press, Boca Raton (1992)

    Google Scholar 

  13. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs, 2nd edn. Springer, New York (2007)

    Book  Google Scholar 

  14. Kiiveri, H., Speed, T.P., Carlin, J.B.: Recursive causal models. J. Aust. Math. Soc. Ser. A 36, 30–52 (1984)

    Article  MathSciNet  Google Scholar 

  15. Koster, J.T.A.: On the validity of the Markov interpretation of path diagrams of Gaussian structural equation systems with correlated errors. Scand. J. Statist. 26, 413–431 (1999)

    Article  MathSciNet  Google Scholar 

  16. Kschischang, F.R., Frey, B.J., Loeliger, H.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)

    Article  MathSciNet  Google Scholar 

  17. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. J. Roy. Statist. Soc. Ser. B 50, 157–224 (1988)

    MathSciNet  MATH  Google Scholar 

  18. Lauritzen, S.L., Dawid, A.P., Larsen, B.N., Leimer, H.G.: Independence properties of directed Markov fields. Networks 20, 491–505 (1990)

    Article  MathSciNet  Google Scholar 

  19. Lauritzen, S.L.: Graphical models. Clarendon, New York (1996)

    MATH  Google Scholar 

  20. Lauritzen, S. L.: Causal inference from graphical models. In: Bardorff-Nielsen, O.E., Cox, D.R., Kliippelberg, C. (eds.) Complex Stochastic Systems, pp 63–107. Chapman and Hall, Boca Raton (2000)

  21. Lauritzen, S.L., Jensen, F.V.: Local computations with valuations from a commutative semigroup. Ann. Math. Artif. Intell. 21, 51–69 (1997)

    Article  MathSciNet  Google Scholar 

  22. Lauritzen, S.L., Richardson, T.S.: Chain graph models and their causal interpretations (with discussion). J. Roy. Stat. Soc. Ser B 64, 321–361 (2002)

    Article  Google Scholar 

  23. Lauritzen, S.L., Wermuth, N.: Graphical models for association between variables, some of which are qualitative and some quantitative. Ann. Stat. 17, 31–57 (1989)

    Article  MathSciNet  Google Scholar 

  24. Loeliger, H.: An introduction to factor graphs. IEEE Signal Process. Mag. 21(1), 28–41 (2004)

    Article  Google Scholar 

  25. Neyman, J.: On the application of probability theory to agricultural experiments: essay on principles. (in Polish) (Engl. transl D. Dabrowska and T. P. Speed. Statist. Sci. 5(1990), 465–480 (1923)

    MATH  Google Scholar 

  26. Pearl, J., Paz, A.: Graphoids. A graph-based logic for reasoning about relevancy relations. In: Proceedings of 7th European Conference on Artificial Intelligence, Brighton, United Kingdom (1986)

  27. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan-Kaufmann, San Mateo (1988)

    MATH  Google Scholar 

  28. Pearl, J.: Graphical models, causality and intervention. Statist. Sci. 8, 266–269 (1993)

    Article  Google Scholar 

  29. Pearl, J.: Causal diagrams for empirical research. Biometrika 82, 669–710 (1995)

    Article  MathSciNet  Google Scholar 

  30. Pearl, J.: Causality: Models, Reasoning, and Inference, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  31. Pena, J.M.: Marginal AMP chain graphs. Internat. J. Approx. Reason. 55, 1185–1206 (2014)

    Article  MathSciNet  Google Scholar 

  32. Richardson, T.S.: Markov properties for acyclic directed mixed graphs. Scand. J. Statist. 30, 145–157 (2003)

    Article  MathSciNet  Google Scholar 

  33. Richardson, T.S.: Personal communication (2018)

  34. Richardson, T.S., Spirtes, P.: Ancestral graph Markov models. Ann. Statist. 30, 962–1030 (2002)

    Article  MathSciNet  Google Scholar 

  35. Rubin, D.B.: Estimating causal effects of treatments in randomized and non-randomized studies. J. Educ. Psychol. 66, 688–701 (1974)

    Article  Google Scholar 

  36. Speed, T.P.: A note on nearest-neighhbour Gibbs and Markov probabilities. Sankhya A 41, 184–197 (1979)

    MATH  Google Scholar 

  37. Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27, 544–548 (1928)

    Article  MathSciNet  Google Scholar 

  38. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search. Springer, New York (1993)

    Book  Google Scholar 

  39. Studený, M.: Conditional independence relations have no finite complete characterization. In: Kubík, S., Á. Víšek, J. (eds.) Information Theory, Statistical Decision Functions and Random Processes: Proceedings of the 11th Prague Conference - B, Kluwer, Dordrecht (also Academia, Prague), vol. 15, pp 377–396 (1992)

  40. Studený, M., Roverato, A., Štěpánová, Š.: Two operations of merging and splitting components in a chain graph. Kybernetika (Prague) 45(2), 208–248 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Wermuth, N., Cox, D.R.: Joint response graphs and separation induced by triangular systems. J. R. Stat. Soc. Ser. B Stat. Methodol. 66, 687–717 (2004)

    Article  MathSciNet  Google Scholar 

  42. Wermuth, N., Cox, D.R., Pearl, J.: Explanation for Multivariate Structures Derived from Univariate Recursive Regressions Technical Report No. 94(1). Univ, Mainz, Germany (1994)

  43. Wermuth, N., Lauritzen, S.L.: Graphical and recursive models for contingency tables. Biometrika 70, 537–552 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is primarily supported by Office on Naval Research grant ONR N00014-17-1-2842. The causal interpretation of Bayesian hypergraphs described in Section 6 was presented at the AAAI Spring Symposium “Beyond Curve Fitting: Causation, Counterfactuals, and Imagination-based AI (AAAI-WHY 2019),” Palo Alto. CA, March 25-27, 2019. Comments by reviewers and symposium participants are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Javidian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Linyuan Lu was supported in part by NSF grant DMS-1600811 and ONR grant N00014-17-1-2842.

Marco Valtorta was supported in part by ONR grant N00014-17-1-2842.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javidian, M.A., Wang, Z., Lu, L. et al. On a hypergraph probabilistic graphical model. Ann Math Artif Intell 88, 1003–1033 (2020). https://doi.org/10.1007/s10472-020-09701-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-020-09701-7

Keywords

Mathematics Subject Classification (2010)

Navigation