Log in

Integration of a novel CMOS-compatible magnetoelectric antenna with a low-noise amplifier and a tunable input matching

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A low-noise amplifier (LNA) topology with tunable input matching and noise cancellation is introduced and described in this paper, which was designed and optimized to interface with a magnetoelectric (ME) antenna in a 0.35 µm MEMS-compatible CMOS process. Compared to conventional antennas, acoustically actuated ME antennas have significantly smaller area for ease of integration. The LNA was simulated with an ME antenna model that was constructed based on antenna measurements. Input matching at the LNA-antenna interface is controlled with a circuit that varies the effective impedance of the gate inductor using a control voltage. Tunability of 455 MHz around 2.4 GHz is achieved for the optimum S11 frequency with a control voltage range of 0.3–1.2 V. The proposed LNA has a noise cancelling feedback loop that improves the noise figure by 4.1 dB. The post-layout simulation results of the LNA show a 1-dB compression point of – 7.4 dBm with an S21 of 17.8 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ramakrishnan, R. V. K., & Rao, T. R. (2017). Design of penta-band antenna with integrated LNA circuit for vehicular communications. IET Circuits, Devices & Systems, 12(3), 221–225.

    Google Scholar 

  2. Nan, T., Lin, H., Gao, Y., Matyushov, A., Yu, G., Chen, H., et al. (2017). Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nature Communications, 8(1), 296. https://doi.org/10.1038/s41467-017-00343-8

    Article  Google Scholar 

  3. Lin, H., Page, M. R., McConney, M., Jones, J., Howe, B., & Sun, N. X. (2018). Integrated magnetoelectric devices: Filters, pico-Tesla magnetometers, and ultracompact acoustic antennas. MRS Bulletin, 43(11), 841–847. https://doi.org/10.1557/mrs.2018.257

    Article  Google Scholar 

  4. Lin, H., Page, M. R., McConney, M., Jones, J., Howe, B., & Sun, N. X. (2018). Future antenna miniaturization mechanism: Magnetoelectric antennas. In 2018 IEEE/MTT-S international microwave symposium-IMS (pp. 220–223). IEEE.

  5. Zaeimbashi, M., Lin, H., Dong, C., Liang, X., Nasrollahpour, M., Chen, H., et al. (2019). NanoNeuroRFID: A wireless implantable device based on magnetoelectric antennas. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 3(3), 206–215. https://doi.org/10.1109/jerm.2019.2903930

    Article  Google Scholar 

  6. Chu, K.-D., Katanbaf, M., Su, C., Zhang, T., & Rudell, J. C. (2018). Integrated CMOS transceivers design towards flexible full duplex (FD) and frequency division duplex (FDD) systems. In 2018 IEEE custom integrated circuits conference (CICC).

  7. Nasrollahpour, M., Sreekumar, R., Hajilou, F., Aldacher, M., & Hamedi-Hagh, S. (2018). Low-power bluetooth receiver front end design with oscillator leakage reduction technique. Journal of Low Power Electronics, 14(1), 179–184.

    Article  Google Scholar 

  8. Yu, W.-H., Yi, H., Mak, P.-I., Yin, J., Martins, R. P. (2017). A 0.18 V 382 µW bluetooth low-energy (BLE) receiver with 1.33 nW sleep power for energy-harvesting applications in 28 nm CMOS. In 2017 IEEE international solid-state circuits conference (ISSCC).

  9. Razavi, B. (2011). RF microelectronics (2nd ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  10. Roobert, A. A., Nirmala Rani, D. G., & Rajaram, S. (9 2019). Design and optimisation of feedforward noise cancelling complementary metal oxide semiconductor LNA for 2.4 GHz WLAN applications. IET Circuits, Devices & Systems, 13(6), 908–919.

    Google Scholar 

  11. Jhon, H.-S., Song, I., Kang, I. M., & Shin, H. (2007). 2.4 GHz ISM-band receiver design in a 0.18 µm mixed signal CMOS process. IEEE Microwave and Wireless Components Letters, 17(10), 736–738.

    Article  Google Scholar 

  12. Xu, L., Chang, C.-H., & Onabajo, M. (May 2016). A 0.77 mW 2.4 GHz RF front-end with – 4.5dBm in-band IIP3 through inherent filtering. IEEE Microwave and Wireless Components Letters (MWCL), 26(5), 352–354.

    Article  Google Scholar 

  13. Lin, Z., Mak, P.-I., & Martins, R. P. (2014). A 0.14-mm2 1.4-mW 59.4-dB-SFDR 2.4 GHz ZigBee/WPAN receiver exploiting a split-LNTA + 50% LO topology in 65-nm CMOS. IEEE Transactions on Microwave Theory and Techniques, 62(7), 1525–1534.

    Article  Google Scholar 

  14. Shaeffer, D. K., & Lee, T. H. (1997). A 1.5 V, 1.5 GHz CMOS low-noise amplifier. IEEE Journal of Solid-State Circuits, 32(5), 745–759.

    Article  Google Scholar 

  15. Chang, C.-H., & Onabajo, M. (2018). Analysis and demonstration of an IIP3 improvement technique for low-power RF low-noise amplifiers. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(3), 859–869.

    Article  MathSciNet  Google Scholar 

  16. Roobert, A. A., Rani, D. G. N., & Rajaram, S. (2019). Design and optimisation of feedforward noise cancelling complementary metal oxide semiconductor LNA for 2.4 GHz WLAN applications. IET Circuits, Devices & Systems, 13, 908–919.

    Google Scholar 

  17. Lee, M., & Kwon, I. (2018). 3–10 GHz noise-cancelling CMOS LNA using gm-boosting technique. IET Circuits, Devices & Systems, 12(1), 12–16.

    Article  Google Scholar 

  18. Liang, X., Chen, H., Sun, N., Lin, H., & Sun, N. X. (2018). Novel acoustically actuated magnetoelectric antennas. In 2018 IEEE international symposium on antennas and propagation & USNC/URSI national radio science meeting (pp. 2189–2190). IEEE.

  19. Dong, C., Li, M., Liang, X., Chen, H., Zhou, H., Wang, X., et al. (2018). Characterization of magnetomechanical properties in FeGaB thin films. Applied Physics Letters, 113(26), 262401.

    Article  Google Scholar 

  20. Liang, X., Dong, C., Celestin, S. J., Wang, X., Chen, H., Ziemer, K. S., et al. (2018). Soft magnetism, magnetostriction, and microwave properties of Fe-Ga-C alloy films. IEEE Magnetics Letters, 10, 1–5.

    Article  Google Scholar 

  21. El-Nozahi, M., Sanchez-Sinencio, E., Entesari, K. A. C. M. O. S., & Low-Noise. (2009). Amplifier with reconfigurable input matching network. IEEE Transactions on Microwave Theory and Techniques, 57(5), 1054–1062. https://doi.org/10.1109/tmtt.2009.2017249

    Article  Google Scholar 

  22. Guo, B., Chen, J., Li, L., **, H., & Yang, G. (2017). A wideband noise-canceling CMOS LNA with enhanced linearity by using complementary nMOS and pMOS configurations. IEEE Journal of Solid-State Circuits, 52(5), 1331–1344.

    Article  Google Scholar 

  23. Rahman, M., & Harjani, R. A. (2018). 2.4-GHz, Sub-1-V, 2.8-dB NF, 475- µ W dual-path noise and nonlinearity cancelling LNA for ultra-low-power radios. IEEE Journal of Solid-State Circuits, 53(5), 1423–1430.

    Article  Google Scholar 

  24. Pan, Z., Qin, C., Ye, Z., Wang, Y., & Yu, Z. (2018). Wideband inductorless low-power LNAs with Gm enhancement and noise-cancellation. IEEE Transactions on Circuits and Systems I Regular Papers, 65(1), 26–38.

    Article  Google Scholar 

  25. Bruccoleri, F., Klumperink, A. M., & Nauta, B. (2004). Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE Journal of Solid-State Circuits, 39(2), 275–282.

    Article  Google Scholar 

  26. Zaeimbashi, M., Nasrollahpour, M., Khalifa, A., et al. (2020). Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing. bioRxiv. https://doi.org/10.1101/2020.06.22.165894.

  27. Salama, M. K., & Soliman, A. M. (2009). Low-voltage low-power CMOS RF low noise amplifier. AEU:  International Journal of Electronics and Communications, 63(6), 478–482.

    Google Scholar 

  28. Kao, H. L., Chin, A., Chang, K. C., & McAlister, S. P. (2007). A low-power current-reuse LNA for ultra-wideband wireless receivers from 3.1 to 10.6 GHz. In Topical meeting on silicon monolithic integrated circuits in RF systems.

  29. Varga, M., & Radić, J. (2018). Design of two LNA topologies in 0.35 µm CMOS technology for 2 GHz frequency range. In 41st International Spring seminar on electronics technology (ISSE).

  30. Pabon, A. A., Roa, E., & Van Noije, W. (2007). On nonlinearity and noise trade-off in a low power 2.45 GHz CMOS LNA-mixer design. In SBMO/IEEE MTT-S international microwave and optoelectronics conference.

Download references

Acknowledgments

The authors would like to thank the XFAB foundry for providing access to the 0.35 µm process design kit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian **ang Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrollahpour, M., Romano, A., Zaeimbashi, M. et al. Integration of a novel CMOS-compatible magnetoelectric antenna with a low-noise amplifier and a tunable input matching. Analog Integr Circ Sig Process 105, 407–415 (2020). https://doi.org/10.1007/s10470-020-01721-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01721-x

Keywords

Navigation