Log in

Joint behavior of point processes of clusters and partial sums for stationary bivariate Gaussian triangular arrays

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

For Gaussian stationary triangular arrays, it is well known that the extreme values may occur in clusters. Here we consider the joint behaviors of the point processes of clusters and the partial sums of bivariate stationary Gaussian triangular arrays. For a bivariate stationary Gaussian triangular array, we derive the asymptotic joint behavior of the point processes of clusters and prove that the point processes and partial sums are asymptotically independent. As an immediate consequence of the results, one may obtain the asymptotic joint distributions of the extremes and partial sums. We illustrate the theoretical findings with a numeric example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, C. W., Turkman, K. F. (1991). The joint limiting distribution of sums and maxima of stationary sequences. Journal of Applied Probability, 28(1), 33–34.

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson, C. W., Turkman, K. F. (1993). Limiting joint distributions of sums and maxima in a statistical context. Theory of Probability and its Applications, 37(2), 314–316.

    Article  MathSciNet  Google Scholar 

  • Anderson, C. W., Turkman, K. F. (1995). Sums and maxima of stationary sequences with heavy tailed distributions. Sankhya Series A, 57, 1–10.

    MathSciNet  MATH  Google Scholar 

  • Berman, S. M. (1964). Limit theorems for the maximum term in stationary sequences. The Annals of Mathematical Statistics, 35(2), 502–516.

    Article  MathSciNet  MATH  Google Scholar 

  • Berman, S. M. (1971). Asymptotic independence of the numbers of high and low level crossings of stationary Gaussian processes. The Annals of Mathematical Statistics, 42(3), 927–945.

    Article  MathSciNet  MATH  Google Scholar 

  • Biondi, F., Kozubowski, T. J., Panorska, A. K. (2005). A new model for quantifying climate episodes. International Journal of Climatology, 25(9), 1253–1264.

    Article  Google Scholar 

  • Buitendag, S., Beirlant, J., de Wet, T. (2020). Confidence intervals for extreme Pareto-type quantiles. Scandinavian Journal of Statistics, 47, 36–55.

    Article  MathSciNet  MATH  Google Scholar 

  • Chow, T. L., Teugels, J. L. (1978). The sum and the maximum of i.i.d. random variables. In: Proceedings of the Second Prague Symposium on Asymptotic Statistics. New York: North Holland.

  • French, J. P., Davis, R. A. (2013). The asymptotic distirbution of the maxima of a Gaussian random field on a lattice. Extremes, 16, 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Hashorva, E., Weng, Z. (2013). Limit laws for extremes of dependent stationary Gaussian arrays. Statistics and Probability Letters, 83(1), 320–330.

    Article  MathSciNet  MATH  Google Scholar 

  • Hashorva, E., Peng, L., Weng, Z. (2015). Maxima of a triangular array of multivariate Gaussian sequence. Statistics and Probability Letters, 103, 62–72.

    Article  MathSciNet  MATH  Google Scholar 

  • Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. The Annals of Statistics, 3, 1163–1174.

    Article  MathSciNet  MATH  Google Scholar 

  • Ho, H.-C., Hsing, T. (1996). On the asymptotic joint distribution of the sum and maximum of stationary normal random variables. Journal of Applied Probability, 33(1), 138–145.

    Article  MathSciNet  MATH  Google Scholar 

  • Ho, H.-C., McCormick, W. P. (1999). Asymptotic distribution of sum and maximum for strongly dependent Gaussian processes. Journal of Applied Probability, 36, 1031–1044.

    Article  MathSciNet  MATH  Google Scholar 

  • Hsing, T., Hüsler, J., Reiss, R.-D. (1996). The extremes of a trangular array of normal random variables. The Annals of Applied Probability, 6(2), 671–686.

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, A., Peng, Z., Qi, Y. (2009). Joint behavior of point process of exceedances and partial sum from a Gaussian sequence. Metrika, 70, 279–295.

    Article  MathSciNet  MATH  Google Scholar 

  • James, B., James, K., Qi, Y. (2007). Limit distribution of the sum and maximum from multivariate Gaussian sequences. Journal of Multivariate Analysis, 98(3), 517–532.

    Article  MathSciNet  MATH  Google Scholar 

  • Kozubowski, T. J., Panorska, A. K. (2005). A mixed bivariate distribution with exponential and geometric marginals. Journal of Statistical Planning and Inference, 134(2), 501–520.

    Article  MathSciNet  MATH  Google Scholar 

  • Kozubowski, T. J., Panorska, A. K., Qeadan, F. (2011). A new multivariate model involving geometric sums and maxima of exponentials. Journal of Statistical Planning and Inference, 141(7), 2353–2367.

    Article  MathSciNet  MATH  Google Scholar 

  • Leadbetter, M. R. (1983). Extremes and local dependence in stationary sequences. Zeitschrift Für Wahrscheinlichkeitstheorie Und Verwandte Gebiete, 65(2), 291–306.

    Article  MathSciNet  MATH  Google Scholar 

  • Leadbetter, M. R., Lindgren, G., Rootzen, H. (1983). Extremes and related properties of stationary sequences and processes. New York-Berlin: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Ling, C. (2019). Extremes of stationary random fields on a lattice. Extremes, 22, 391–411.

    Article  MathSciNet  MATH  Google Scholar 

  • McCormick, W. P., Qi, Y. (2000). Asymptotic distribution for the sum and maximum of Gaussian processes. Journal of Applied Probability, 37, 958–971.

    Article  MathSciNet  MATH  Google Scholar 

  • Mittal, Y., Ylvisaker, D. (1975). Limit distribution for the maximum of stationary Gaussian processes. Stochastic Processes and their Applications, 3(1), 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  • O’Brien, G. (1987). Extreme values for stationary and Markov sequences. The Annals of Probability, 15(1), 281–291.

    MathSciNet  MATH  Google Scholar 

  • Peng, Z., Nadarajah, S. (2003). On the joint limiting distribution of sums and maxima of stationary normal sequence. Theory of Probability and Its Applications, 47(4), 706–709.

    Article  MathSciNet  MATH  Google Scholar 

  • Peng, Z., Tong, J., Weng, Z. (2012). Joint limit distributions of exceedances point processes and partial sums of Gaussian vector sequence. Acta Mathematica Sinica, English Series, 28(8), 1647–1662.

    Article  MathSciNet  MATH  Google Scholar 

  • Wiśniewski, M. (1996). On extreme-order statistics and point processes of exceedances in multivariate stationary Gaussian sequences. Statistics and Probability Letters, 29, 55–59.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for careful reading and for their perceptive and useful comments which greatly improved the paper. We appreciate Professor Wan Tang for his fruitful discussions on this topic. **hui Guo gratefully acknowledges the financial support by the National Natural Science Foundation of China (grant no. 71991472). Yingyin Lu was supported by Nanchong Municipal Government-Universities Scientific Cooperation Project SXHZ045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingyin Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Lu, Y. Joint behavior of point processes of clusters and partial sums for stationary bivariate Gaussian triangular arrays. Ann Inst Stat Math 75, 17–37 (2023). https://doi.org/10.1007/s10463-022-00832-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-022-00832-8

Keywords

Navigation