Log in

A survey of transfer learning for machinery diagnostics and prognostics

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

In industrial manufacturing systems, failures of machines caused by faults in their key components greatly influence operational safety and system reliability. Many data-driven methods have been developed for machinery diagnostics and prognostics. However, there lacks sufficient labeled data to train a high-performance data-driven model. Moreover, machinery datasets are usually collected from different operation conditions and mechanical components, leading to poor model generalization. To address these concerns, cross-domain transfer learning methods are applied to enhance the feasibility and accuracy of data-driven methods for machinery diagnostics and prognostics. This paper presents a comprehensive survey about how recent studies apply diverse transfer learning methods into machinery tasks including diagnostics and prognostics. Three types of commonly-used transfer methods, i.e., model and parameter transfer, feature matching and adversarial adaptation, are systematically summarized and elaborated on their main ideas, typical models and corresponding representative studies on machinery diagnostics and prognostics. In addition, ten widely-used open-source machinery datasets are presented. Based on recent research progress, this survey expounds emerging challenges and future research directions of transfer learning for industrial applications. This survey presents a systematic review of recent research with clear explanations as well as in-depth insights, thereby hel** readers better understand transfer learning for machinery diagnostics and prognostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Arias Chao M, Kulkarni C, Goebel K, Fink O (2021) Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics. Data 6(1):5

    Article  Google Scholar 

  • Azamfar M, Li X, Lee J (2020) Intelligent ball screw fault diagnosis using a deep domain adaptation methodology. Mech Mach Theory 151:103932

    Article  Google Scholar 

  • Baktashmotlagh M, Harandi MT, Lovell BC, Salzmann M (2013) Unsupervised domain adaptation by domain invariant projection. In: Proceedings of the IEEE International conference on computer vision, pp 769–776

  • Bole B, Kulkarni CS, Daigle M (2014) Adaptation of an electrochemistry-based li-ion battery model to account for deterioration observed under randomized use. Inc., Moffett Field United States, Technical report, SGT

  • Borgwardt KM, Gretton A, Rasch MJ, Kriegel H-P, Schölkopf B, Smola AJ (2006) Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22(14):49–57

    Article  Google Scholar 

  • Cai G, Wang Y, He L, Zhou M (2019) Unsupervised domain adaptation with adversarial residual transform networks. IEEE Trans Neural Netw Learn Syst 31(8):3073–3086

    Article  Google Scholar 

  • Case Western Reserve University Bearing Data Center, CWRU Dataset. https://csegroups.case.edu/bearingdatacenter

  • Chai Z, Zhao C, Huang B (2021) Multisource-refined transfer network for industrial fault diagnosis under domain and category inconsistencies. IEEE Trans Cybernet

  • Chen Z, Gryllias K, Li W (2019) Intelligent fault diagnosis for rotary machinery using transferable convolutional neural network. IEEE Trans Ind Inform 16(1):339–349

    Article  Google Scholar 

  • Chen W, Qiu Y, Feng Y, Li Y, Kusiak A (2021) Diagnosis of wind turbine faults with transfer learning algorithms. Renew Energy 163:2053–2067

    Article  Google Scholar 

  • Chen C, Shen F, Xu J, Yan R (2021) Model parameter transfer for gear fault diagnosis under varying working conditions. Chin J Mech Eng 34(1):1–13

    Article  Google Scholar 

  • Chen Q, Liu Y, Wang Z, Wassell I, Chetty K (2018) Re-weighted adversarial adaptation network for unsupervised domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7976–7985

  • Chen C, Lu N, Jiang B, Wang C (2021) A Risk-Averse Remaining Useful Life Estimation for Predictive Maintenance. IEEE/CAA J Autom Sin 8(2):412–422. https://doi.org/10.1109/JAS.2021.1003835

  • Cheng C, Zhou B, Ma G, Wu D, Yuan Y (2020) Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data. Neurocomputing 409:35–45

    Article  Google Scholar 

  • da Costa PRDO, Akçay A, Zhang Y, Kaymak U (2020) Remaining useful lifetime prediction via deep domain adaptation. Reliab Eng System Saf 195:106682

    Article  Google Scholar 

  • Daga AP, Fasana A, Marchesiello S, Garibaldi L (2019) The politecnico di torino rolling bearing test rig: Description and analysis of open access data. Mech Syst Signal Process 120:252–273

    Article  Google Scholar 

  • Deebak B, Al-Turjman F (2021) Digital-twin assisted: fault diagnosis using deep transfer learning for machining tool condition. Int J Intell Syst

  • Deng M, Deng A, Zhu J, Shi Y, Liu Y (2021) Intelligent fault diagnosis of rotating components in the absence of fault data: a transfer-based approach. Measurement 173:108601

    Article  Google Scholar 

  • Deng Q, Kang Q, Zhang L, Zhou M, An J (2022) Objective Space-based Population Generation to Accelerate Evolutionary Algorithms for Large-scale Many-objective Optimization. IEEE Trans Evol Comput 1–1:9762228. https://doi.org/10.1109/TEVC.2022.3166815

  • Ding Y, Ding P, Jia M (2021) A novel remaining useful life prediction method of rolling bearings based on deep transfer auto-encoder. IEEE Trans Instrum Measure 70:1–12

    Google Scholar 

  • Ding Y, Jia M, Cao Y (2021) Remaining useful life estimation under multiple operating conditions via deep subdomain adaptation. IEEE Trans Instrum Measure 70:1–11

    Google Scholar 

  • Ding Y, Jia M, Miao Q, Huang P (2021) Remaining useful life estimation using deep metric transfer learning for kernel regression. Reliab Eng Syst Saf 212:107583

    Article  Google Scholar 

  • Dong Y, Li Y, Zheng H, Wang R, Xu M (2022) A new dynamic model and transfer learning based intelligent fault diagnosis framework for rolling element bearings race faults: Solving the small sample problem. ISA Trans 121:327–348

    Article  Google Scholar 

  • FEMTO-ST Institute, FEMTO Dataset. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#femto

  • Fernando B, Habrard A, Sebban M, Tuytelaars T (2013) Unsupervised visual domain adaptation using subspace alignment. In: Proceedings of the IEEE international conference on computer vision, pp 2960–2967

  • Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, Marchand M, Lempitsky V (2016) Domain-adversarial training of neural networks. J Mach Learn Res 17(1):2030–2096

    MathSciNet  MATH  Google Scholar 

  • Ghifary M, Kleijn WB, Zhang M (2014) Domain adaptive neural networks for object recognition. In: Pacific Rim International Conference on Artificial Intelligence, pp 898–904. Springer

  • Gong B, Shi Y, Sha F, Grauman K (2012) Geodesic flow kernel for unsupervised domain adaptation. In: 2012 IEEE Conference on computer vision and pattern recognition, pp. 2066–2073. IEEE

  • Gopalan R, Li R, Chellappa R (2011) Domain adaptation for object recognition: an unsupervised approach. In: 2011 International conference on computer vision, pp. 999–1006. IEEE

  • Gretton A, Borgwardt K, Rasch M, Schölkopf B, Smola A (2006) A kernel method for the two-sample-problem. Adv Neural Inform Process Syst 19:513–520

    MATH  Google Scholar 

  • Guo L, Lei Y, **ng S, Yan T, Li N (2018) Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data. IEEE Trans Ind Electron 66(9):7316–7325

    Article  Google Scholar 

  • Han T, Liu C, Wu R, Jiang D (2021) Deep transfer learning with limited data for machinery fault diagnosis. Appl Soft Comput 103:107150

    Article  Google Scholar 

  • Han T, Liu C, Yang W, Jiang D (2019) A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults. Knowl-Based Syst 165:474–487

    Article  Google Scholar 

  • Han T, Liu C, Yang W, Jiang D (2020) Deep transfer network with joint distribution adaptation: a new intelligent fault diagnosis framework for industry application. ISA Trans 97:269–281

    Article  Google Scholar 

  • Han H, Ma W, Zhou M, Guo Q, Abusorrah A (2020) A novel semi-supervised learning approach to pedestrian reidentification. IEEE Internet Things J 8(4):3042–3052

    Article  Google Scholar 

  • Han S, Zhu K, Zhou M, Liu X (2022) Evolutionary weighted broad learning and its application to fault diagnosis in self-organizing cellular networks. IEEE transactions on cybernetics, 1–13. https://doi.org/10.1109/TCYB.2021.3126711

  • Hasan MJ, Islam MM, Kim J-M (2019) Acoustic spectral imaging and transfer learning for reliable bearing fault diagnosis under variable speed conditions. Measurement 138:620–631

    Article  Google Scholar 

  • He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  • Henaff, O.: Data-efficient image recognition with contrastive predictive coding. In: International Conference on Machine Learning, pp. 4182–4192 (2020). PMLR

  • Huang Z, Lei Z, Wen G, Huang X, Zhou H, Yan R, Chen X (2021) A multi-source dense adaptation adversarial network for fault diagnosis of machinery. IEEE Trans Ind Electron 69:6298–6307

    Article  Google Scholar 

  • Huang G, Zhang Y, Ou J (2021) Transfer remaining useful life estimation of bearing using depth-wise separable convolution recurrent network. Measurement 176:109090

    Article  Google Scholar 

  • Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017): Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708

  • Janssens O, Loccufier M, Van Hoecke S (2018) Thermal imaging and vibration-based multisensor fault detection for rotating machinery. IEEE Trans Ind Electron 15(1):434–444

    Google Scholar 

  • Janssens O, Van de Walle R, Loccufier M, Van Hoecke S (2017) Deep learning for infrared thermal image based machine health monitoring. IEEE/ASME Transa MechD 23(1):151–159

    Article  Google Scholar 

  • Jiao J, Lin J, Zhao M, Liang K (2020) Double-level adversarial domain adaptation network for intelligent fault diagnosis. Knowl-Based Syst 205:106236

    Article  Google Scholar 

  • Jiao R, Peng K, Dong J (2021) Remaining useful life prediction for a roller in a hot strip mill based on deep recurrent neural networks. IEEE/CAA J Autom Sin 8(7):1345–1354

    Article  Google Scholar 

  • Jiao J, Zhao M, Lin J, Liang K (2020) Residual joint adaptation adversarial network for intelligent transfer fault diagnosis. Mech Syst Signal Process 145:106962

    Article  Google Scholar 

  • ** T, Yan C, Chen C, Yang Z, Tian H, Guo J (2021) New domain adaptation method in shallow and deep layers of the CNN for bearing fault diagnosis under different working conditions. Int J Adv Manuf Technol 12:1–12

    Google Scholar 

  • Kang Q, Yao S, Zhou M, Zhang K, Abusorrah A (2020) Enhanced subspace distribution matching for fast visual domain adaptation. IEEE Trans Comput Soc Syst 7(4):1047–1057

    Article  Google Scholar 

  • Kang Q, Yao S, Zhou M, Zhang K, Abusorrah A (2020) Effective visual domain adaptation via generative adversarial distribution matching. IEEE Trans Neural Netw Learn Syst 32(9):3919–3929

    Article  MathSciNet  Google Scholar 

  • Kim M, Ko JU, Lee J, Youn BD, Jung JH, Sun KH (2021) A domain adaptation with semantic clustering (dasc) method for fault diagnosis of rotating machinery. ISA transactions

  • Ko T, Kim H (2019) Fault classification in high-dimensional complex processes using semi-supervised deep convolutional generative models. IEEE Trans Ind Inform 16(4):2868–2877

    Article  Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inform Process Syst 25:1097–1105

    Google Scholar 

  • Lei Y, Li N, Guo L, Li N, Yan T, Lin J (2018) Machinery health prognostics: a systematic review from data acquisition to rul prediction. Mech Syst Signal Process 104:799–834

    Article  Google Scholar 

  • Li J, Chen E, Ding Z, Zhu L, Lu K, Shen HT (2020) Maximum density divergence for domain adaptation. IEEE Trans Pattern Anal Mach Intell 43(11):3918–3930

    Article  Google Scholar 

  • Li W, Chen Z, He G (2020) A novel weighted adversarial transfer network for partial domain fault diagnosis of machinery. IEEE Trans Ind Inform 17(3):1753–1762

    Article  Google Scholar 

  • Li X, Hu Y, Li M, Zheng J (2020) Fault diagnostics between different type of components: A transfer learning approach. Appl Soft Comput 86:105950

    Article  Google Scholar 

  • Li H, Hu G, Li J, Zhou M (2021) Intelligent fault diagnosis for large-scale rotating machines using binarized deep neural networks and random forests. IEEE Trans Autom Sci Eng 5:1–11. https://doi.org/10.1109/TASE.2020.3048056

    Article  Google Scholar 

  • Li X, Jia X-D, Zhang W, Ma H, Luo Z, Li X (2020) Intelligent cross-machine fault diagnosis approach with deep auto-encoder and domain adaptation. Neurocomputing 383:235–247

    Article  Google Scholar 

  • Li X, Jiang H, Wang R, Niu M (2021) Rolling bearing fault diagnosis using optimal ensemble deep transfer network. Knowl-Based Syst 213:106695

    Article  Google Scholar 

  • Li X, Jiang H, Zhao K, Wang R (2019) A deep transfer nonnegativity-constraint sparse autoencoder for rolling bearing fault diagnosis with few labeled data. IEEE Access 7:91216–91224

    Article  Google Scholar 

  • Li X, Li X, Ma H (2020) Deep representation clustering-based fault diagnosis method with unsupervised data applied to rotating machinery. Mech Syst Signal Process 143:106825

    Article  Google Scholar 

  • Li Q, Shen C, Chen L, Zhu Z (2021) Knowledge map**-based adversarial domain adaptation: a novel fault diagnosis method with high generalizability under variable working conditions. Mech Syst Signal Process 147:107095

    Article  Google Scholar 

  • Li X, Zhang W, Ding Q (2018) A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning. Neurocomputing 310:77–95

    Article  Google Scholar 

  • Li X, Zhang W, Ma H, Luo Z, Li X (2020) Partial transfer learning in machinery cross-domain fault diagnostics using class-weighted adversarial networks. Neural Netw 129:313–322

    Article  Google Scholar 

  • Li X, Zhang W, Ma H, Luo Z, Li X (2020) Deep learning-based adversarial multi-classifier optimization for cross-domain machinery fault diagnostics. J Manuf Syst 55:334–347

    Article  Google Scholar 

  • Li T, Zhao Z, Sun C, Yan R, Chen X (2021) Domain adversarial graph convolutional network for fault diagnosis under variable working conditions. IEEE Trans Instrument Measure 70:1–10

    Google Scholar 

  • Li H, Wang Y (2013) Rolling bearing reliability estimation based on logistic regression model. In: 2013 International conference on quality, reliability, risk, maintenance, and safety engineering (QR2MSE), pp. 1730–1733. IEEE

  • Liao Y, Huang R, Li J, Chen Z, Li W (2021) Dynamic distribution adaptation based transfer network for cross domain bearing fault diagnosis. Chin J Mech Eng 34(1):1–10

    Google Scholar 

  • Lin J, Lin Z, Liao G, Yin H (2021) A Novel Product Remaining Useful Life Prediction Approach Considering Fault Effects. IEEE/CAA J Autom Sin 8(11):1762–1773. https://doi.org/10.1109/JAS.2021.1004168

  • Liu K, Ye Z, Guo H, Cao D, Chen L, Wang FY (2021) FISS GAN: A Generative Adversarial Network for Foggy Image Semantic Segmentation. IEEE/CAA J Autom Sin 8(8):1428–1439

  • Liu M, Li X, Chakrabarty K, Gu X (2022) Knowledge transfer in board-level functional fault diagnosis enabled by domain adaptation. IEEE Trans Comput-Aided Des Integr Circuits Syst 41(3):762–775

    Article  Google Scholar 

  • Liu M-Y, Tuzel O (2016) Coupled generative adversarial networks. Adv Neural Inform Process Syst 29:469–477

    Google Scholar 

  • Liu H, Zhou M, Liu Q (2019) An embedded feature selection method for imbalanced data classification. IEEE/CAA J Autom Sin 6(3):703–715

    Article  Google Scholar 

  • Long M, Zhu H, Wang J, Jordan MI (2017) Deep transfer learning with joint adaptation networks. In: International Conference on Machine Learning, pp. 2208–2217. PMLR

  • Long M, Wang J, Ding G, Sun J, Yu PS (2013) Transfer feature learning with joint distribution adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2200–2207

  • Long M, Wang J, Ding G, Sun J, Yu PS (2014) Transfer joint matching for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1410–1417 (2014)

  • Long M, Cao Y, Wang J, Jordan M (2015) Learning transferable features with deep adaptation networks. In: International conference on machine learning, pp 97–105. PMLR

  • Lu W, Liang B, Cheng Y, Meng D, Yang J, Zhang T (2016) Deep model based domain adaptation for fault diagnosis. IEEE Trans Ind Electron 64(3):2296–2305

    Article  Google Scholar 

  • Lu N, **ao H, Sun Y, Han M, Wang Y (2021) A new method for intelligent fault diagnosis of machines based on unsupervised domain adaptation. Neurocomputing 427:96–109

    Article  Google Scholar 

  • Ma P, Zhang H, Fan W, Wang C (2020) A diagnosis framework based on domain adaptation for bearing fault diagnosis across diverse domains. ISA Trans 99:465–478

    Article  Google Scholar 

  • Mao W, He J, Zuo MJ (2019) Predicting remaining useful life of rolling bearings based on deep feature representation and transfer learning. IEEE Trans Instrum Measure 69(4):1594–1608

    Article  Google Scholar 

  • Miao M, Yu J (2021) A deep domain adaptative network for remaining useful life prediction of machines under different working conditions and fault modes. IEEE Trans Instrum Measure 70:1–14

    Google Scholar 

  • Michau G, Fink O (2021) Unsupervised transfer learning for anomaly detection: application to complementary operating condition transfer. Knowl-Based Syst 216:106816

    Article  Google Scholar 

  • Mosallam A, Medjaher K, Zerhouni N (2013) Nonparametric time series modelling for industrial prognostics and health management. The Int J Adv Manuf Technol 69(5–8):1685–1699

    Article  Google Scholar 

  • NASA Ames Prognostics Data Repository. http://ti.arc.nasa.gov/project/prognostic-data-repository

  • Nasiri A, Taheri-Garavand A, Omid M, Carlomagno GM (2019) Intelligent fault diagnosis of cooling radiator based on deep learning analysis of infrared thermal images. Appl Thermal Engi 163:114410

    Article  Google Scholar 

  • Nectoux P, Gouriveau R, Medjaher K, Ramasso E, Chebel-Morello, B., Zerhouni, N., Varnier, C.: PRONOSTIA: An experimental platform for bearings accelerated degradation tests. In: IEEE International conference on prognostics and health management, PHM’12., pp. 1–8 (2012). IEEE Catalog Number: CPF12PHM-CDR

  • Oh H, Jung JH, Jeon BC, Youn BD (2017) Scalable and unsupervised feature engineering using vibration-imaging and deep learning for rotor system diagnosis. IEEE Trans Ind Electron 65(4):3539–3549

    Article  Google Scholar 

  • PHM Society, PHM09 Gearbox Datasets. https://phmsociety.org/public-data-sets/

  • Paderborn University, Paderborn University Dataset. https://mb.uni-paderborn.de/kat/datacenter

  • Pan SJ, Tsang IW, Kwok JT, Yang Q (2010) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22(2):199–210

    Article  Google Scholar 

  • Qian W, Li S, Jiang X (2019) Deep transfer network for rotating machine fault analysis. Pattern Recognit 96:106993

    Article  Google Scholar 

  • Qian W, Li S, Yao T, Xu K (2021) Discriminative feature-based adaptive distribution alignment (dfada) for rotating machine fault diagnosis under variable working conditions. Appl Soft Comput 99:106886

    Article  Google Scholar 

  • Qin A-S, Mao H-L, Hu Q (2021) Cross-domain fault diagnosis of rolling bearing using similar features-based transfer approach. Measurement 172:108900

    Article  Google Scholar 

  • Qiu H, Lee J, Lin J, Yu G (2006) Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics. J Sound Vibr 289(4–5):1066–1090

    Article  Google Scholar 

  • Ragab M, Chen Z, Wu M, Foo CS, Kwoh CK, Yan R, Li X (2020) Contrastive adversarial domain adaptation for machine remaining useful life prediction. IEEE Trans Ind Inform 17(8):5239–5249

    Article  Google Scholar 

  • Ragab M, Chen Z, Wu M, Kwoh CK, Li X (2020) Adversarial transfer learning for machine remaining useful life prediction. In: 2020 IEEE International Conference on Prognostics and Health Management (ICPHM), pp. 1–7. IEEE

  • Renwick J, Kulkarni CS, Celaya JR (2015) Analysis of electrolytic capacitor degradation under electrical overstress for prognostic studies. In: Proceedings of the Annual Conference of the Prognostics and Health Management Society, vol. 6 (2015)

  • Saito K, Watanabe K, Ushiku Y, Harada T (2018) Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3723–3732

  • Saito K, Ushiku Y, Harada T (2017) Asymmetric tri-training for unsupervised domain adaptation. In: International Conference on Machine Learning, pp. 2988–2997. PMLR

  • Saufi SR, Ahmad ZAB, Leong MS, Lim MH (2020) Gearbox fault diagnosis using a deep learning model with limited data sample. IEEE Trans Ind Inform 16(10):6263–6271

    Article  Google Scholar 

  • Saxena A, Goebel K, Simon D, Eklund N *008( Damage propagation modeling for aircraft engine run-to-failure simulation. In: 2008 International conference on prognostics and health management, pp 1–9 (2008). IEEE

  • Shao S, McAleer S, Yan R, Baldi P (2018) Highly accurate machine fault diagnosis using deep transfer learning. IEEE Trans Ind Inform 15(4):2446–2455

    Article  Google Scholar 

  • Shao H, **a M, Han G, Zhang Y, Wan J (2020) Intelligent fault diagnosis of rotor-bearing system under varying working conditions with modified transfer convolutional neural network and thermal images. IEEE Trans Ind Inform 17(5):3488–3496

    Article  Google Scholar 

  • Shen F, Langari R, Yan R (2020) Transfer between multiple machine plants: a modified fast self-organizing feature map and two-order selective ensemble based fault diagnosis strategy. Measurement 151:107155

    Article  Google Scholar 

  • Shen C, Wang X, Wang D, Li Y, Zhu J, Gong M (2021) Dynamic joint distribution alignment network for bearing fault diagnosis under variable working conditions. IEEE Trans Instrum Meas 70:1–13

    Google Scholar 

  • Shen J, Qu Y, Zhang W, Yu Y (2018) Wasserstein distance guided representation learning for domain adaptation. In: Thirty-Second AAAI conference on artificial intelligence

  • Shen F, Chen C, Yan R, Gao RX (2015) Bearing fault diagnosis based on svd feature extraction and transfer learning classification. In: 2015 Prognostics and System Health Management Conference (PHM), pp. 1–6. IEEE

  • Shi X, Kang Q, An J, Zhou M (2021) Novel L1 Regularized Extreme Learning Machine for Soft-Sensing of an Industrial Process. IEEE Trans Industr Inform 18(2):1009–1017. https://doi.org/10.1109/TII.2021.3065377

  • Si J, Shi H, Chen J, Zheng C (2021) Unsupervised deep transfer learning with moment matching: a new intelligent fault diagnosis approach for bearings. Measurement 172:108827

    Article  Google Scholar 

  • Silva L, Magaia N, Sousa B, Kobusińska A, Casimiro A, Mavromoustakis CX, Mastorakis G, De Albuquerque VHC (2021) Computing paradigms in emerging vehicular environments: a review. IEEE/CAA J Autom Sin 8(3):491–511

    Article  Google Scholar 

  • Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. ar**v preprint ar**v:1409.1556

  • Sloukia F, El Aroussi M, Medromi H, Wahbi M (2013) Bearings prognostic using mixture of gaussians hidden markov model and support vector machine. In: 2013 ACS international conference on computer systems and applications (AICCSA), pp. 1–4. IEEE

  • Society For Machinery Failure Prevention Technology, MFPT Dataset. https://www.mfpt.org/fault-data-sets/

  • Southeast University, Gearbox Dataset. http://mlmechanics.ics.uci.edu/

  • Sun C, Ma M, Zhao Z, Tian S, Yan R, Chen X (2018) Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing. IEEE Trans Ind Inform 15(4):2416–2425

    Article  Google Scholar 

  • Sun B, Saenko K (2015) Subspace distribution alignment for unsupervised domain adaptation. BMVC 4:1–24

    Google Scholar 

  • Sun B, Saenko K (2016) Deep coral: correlation alignment for deep domain adaptation. In: European conference on computer vision, pp 443–450. Springer

  • Sun B, Feng J, Saenko K (2017) Correlation alignment for unsupervised domain adaptation. In: Domain adaptation in computer vision applications, pp 153–171. Springer, Cham

  • Sun C, Yin H, Li Y, Chai Y (2021) A Novel Rolling Bearing Vibration Impulsive Signals Detection Approach Based on Dictionary Learning. in IEEE/CAA J Autom Sin 8(6): 1188–1198

  • Sutrisno E, Oh H, Vasan ASS, Pecht M (2012) Estimation of remaining useful life of ball bearings using data driven methodologies. In: 2012 IEEE Conference on Prognostics and Health Management, pp. 1–7 (2012). IEEE

  • Tzeng E, Hoffman J, Darrell T, Saenko K (2015) Simultaneous deep transfer across domains and tasks. In: Proceedings of the IEEE international conference on computer vision, pp 4068–4076

  • Tzeng E, Hoffman J, Zhang N, Saenko K, Darrell T (2014) Deep domain confusion: Maximizing for domain invariance. ar**v preprint ar**v:1412.3474

  • Tzeng E, Hoffman J, Saenko K, Darrell T (2017) Adversarial discriminative domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7167–7176

  • Wang J, Chen Y, Feng W, Yu H, Huang M, Yang Q (2020) Transfer learning with dynamic distribution adaptation. ACM Trans Intell Syst Technol (TIST) 11(1):1–25

    Google Scholar 

  • Wang X, He H, Li L (2019) A hierarchical deep domain adaptation approach for fault diagnosis of power plant thermal system. IEEE Trans Ind Inform 15(9):5139–5148

    Article  Google Scholar 

  • Wang B, Lei Y, Yan T, Li N, Guo L (2020) Recurrent convolutional neural network: a new framework for remaining useful life prediction of machinery. Neurocomputing 379:117–129

    Article  Google Scholar 

  • Wang X, Shen C, **a M, Wang D, Zhu J, Zhu Z (2020) Multi-scale deep intra-class transfer learning for bearing fault diagnosis. Reliab Eng Syst Saf 202:107050

    Article  Google Scholar 

  • Wang X, Wanga T, Ming A, Zhang W, Li A, Chu F (2021) Cross-operating-condition degradation knowledge learning for remaining useful life estimation of bearings. IEEE Trans Instrum Measure 70:1–11

    Article  Google Scholar 

  • Wang C, **n C, Xu Z (2021) A novel deep metric learning model for imbalanced fault diagnosis and toward open-set classification. Knowl-Based Syst 220:1106925

    Article  Google Scholar 

  • Wang F, Xu T, Tang T, Zhou M, Wang H (2016) Bilevel feature extraction-based text mining for fault diagnosis of railway systems. IEEE Trans Intell Trans Syst 18(1):49–58

    Article  Google Scholar 

  • Wang J, Chen Y, Hao S, Feng W, Shen Z (2017) Balanced distribution adaptation for transfer learning. In: 2017 IEEE international conference on data mining (ICDM), pp. 1129–1134. IEEE

  • Wang J, Feng W, Chen Y, Yu H, Huang M, Yu PS (2018) Visual domain adaptation with manifold embedded distribution alignment. In: Proceedings of the 26th ACM international conference on multimedia, pp 402–410

  • Wang J, **e J, Zhang L, Duan L (2016) A factor analysis based transfer learning method for gearbox diagnosis under various operating conditions. In: 2016 International Symposium on Flexible Automation (ISFA), pp. 81–86. IEEE

  • Wen L, Gao L, Li X (2017) A new deep transfer learning based on sparse auto-encoder for fault diagnosis. IEEE Trans Syst Man Cybernet 49(1):136–144

    Article  Google Scholar 

  • Wen L, Li X, Gao L, Zhang Y (2017) A new convolutional neural network-based data-driven fault diagnosis method. IEEE Trans Ind Electron 65(7):5990–5998

    Article  Google Scholar 

  • Wu Z, Jiang H, Lu T, Zhao K (2020) A deep transfer maximum classifier discrepancy method for rolling bearing fault diagnosis under few labeled data. Knowl-Based Syst 196:105814

    Article  Google Scholar 

  • Wu Z, Jiang H, Zhao K, Li X (2020) An adaptive deep transfer learning method for bearing fault diagnosis. Measurement 151:107227

    Article  Google Scholar 

  • **a P, Huang Y, Li P, Liu C, Shi L (2021) Fault knowledge transfer assisted ensemble method for remaining useful life prediction. IEEE Trans Ind Inform 18(3):1758–1769

    Article  Google Scholar 

  • **a M, Li T, Shu T, Wan J, De Silva CW, Wang Z (2018) A two-stage approach for the remaining useful life prediction of bearings using deep neural networks. IEEE Trans Ind Inform 15(6):3703–3711

    Article  Google Scholar 

  • Yang B, Lee C-G, Lei Y, Li N, Lu N (2021) Deep partial transfer learning network: a method to selectively transfer diagnostic knowledge across related machines. Mech Syst Signal Process 156:107618

    Article  Google Scholar 

  • Yang B, Lei Y, Jia F, **ng S (2019) An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings. Mech Syst Signal Process 122:692–706

    Article  Google Scholar 

  • Yang N, Zheng Z, Zhou M, Guo X, Qi L, Wang T (2021) A Domain-Guided Noise-Optimization-Based Inversion Method for Facial Image Manipulation. IEEE Trans. on Image Processing 30:6198–6211

  • Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? ar**v preprint ar**v:1411.1792

  • Yu C, Wang J, Chen Y, Huang M (2019) Transfer learning with dynamic adversarial adaptation network. In: 2019 IEEE international conference on data mining (ICDM), pp 778–786. IEEE

  • Yu S, Wu Z, Zhu X, Pecht M (2019) A domain adaptive convolutional lstm model for prognostic remaining useful life estimation under variant conditions. In: 2019 Prognostics and System Health Management Conference (PHM-Paris), pp. 130–137. IEEE

  • Yuan H, Zhou M (2020) Profit-maximized collaborative computation offloading and resource allocation in distributed cloud and edge computing systems. IEEE Trans Autom Scid Eng 18(3):1277–1287

    Article  MathSciNet  Google Scholar 

  • Zhang Z, Chen H, Li S, An Z (2020) Unsupervised domain adaptation via enhanced transfer joint matching for bearing fault diagnosis. Measurement 165:108071

    Article  Google Scholar 

  • Zhang Z, Chen H, Li S, An Z, Wang J (2020) A novel geodesic flow kernel based domain adaptation approach for intelligent fault diagnosis under varying working condition. Neurocomputing 376:54–64

    Article  Google Scholar 

  • Zhang L, Guo L, Gao H, Dong D, Fu G, Hong X (2020) Instance-based ensemble deep transfer learning network: A new intelligent degradation recognition method and its application on ball screw. Mech Syst Signal Process 140:106681

    Article  Google Scholar 

  • Zhang W, Li X, Jia X-D, Ma H, Luo Z, Li X (2020) Machinery fault diagnosis with imbalanced data using deep generative adversarial networks. Measurement 152:107377

    Article  Google Scholar 

  • Zhang W, Li X, Ma H, Luo Z, Li X (2021) Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions. Reliab Eng Syst Saf 211:1075560

    Article  Google Scholar 

  • Zhang R, Tao H, Wu L, Guan Y (2017) Transfer learning with neural networks for bearing fault diagnosis in changing working conditions. IEEE Access 5:14347–14357

    Article  Google Scholar 

  • Zhang S, Zhang S, Wang B, Habetler TG (2020) Deep learning algorithms for bearing fault diagnostics-a comprehensive review. IEEE Access 8:29857–29881

    Article  Google Scholar 

  • Zhao K, Jiang H, Li X, Wang R (2021) Ensemble adaptive convolutional neural networks with parameter transfer for rotating machinery fault diagnosis. Int J Mach Learn Cybernet 12(5):1483–1499

    Article  Google Scholar 

  • Zhao K, Jiang H, Wang K, Pei Z (2021) Joint distribution adaptation network with adversarial learning for rolling bearing fault diagnosis. Knowl-Based Syst 222:106974

    Article  Google Scholar 

  • Zhao M, Jiao J, Lin J (2018) A data-driven monitoring scheme for rotating machinery via self-comparison approach. IEEE Trans Ind Inform 15(4):2435–2445

    Article  Google Scholar 

  • Zhao R, Yan R, Chen Z, Mao K, Wang P, Gao RX (2019) Deep learning and its applications to machine health monitoring. Mech Syst Signal Process 115:213–237

    Article  Google Scholar 

  • Zhao B, Zhang X, Zhan Z, Pang S (2020) Deep multi-scale convolutional transfer learning network: a novel method for intelligent fault diagnosis of rolling bearings under variable working conditions and domains. Neurocomputing 407:24–38

    Article  Google Scholar 

  • He Z, Shao H, **g L, Cheng J, Yang Y (2020) Transfer fault diagnosis of bearing installed in different machines using enhanced deep auto-encoder. Measurement 152:107393

    Article  Google Scholar 

  • Zhong K, Han M, Han B (2019) Data-driven based fault prognosis for industrial systems: a concise overview. IEEE/CAA J Autom Sin 7(2):330–345

    Article  Google Scholar 

  • Zhu J, Chen N, Shen C (2019) A new deep transfer learning method for bearing fault diagnosis under different working conditions. IEEE Sens J 20(15):8394–8402

    Article  Google Scholar 

  • Zhu J, Chen N, Shen C (2020) A new data-driven transferable remaining useful life prediction approach for bearing under different working conditions. Mech Syst Signal Process 139:106602

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 51775385 and Grant 61703279, in part by the Strategy Research Project of Artificial Intelligence Algorithms of Ministry of Education of China, in part by the Shanghai Industrial Collaborative Science and Technology Innovation Project (2021-cyxt2-kj10), in part by the Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100) and the Fundamental Research Funds for the Central Universities, and in part by the Ministry of Education and King Abdulaziz University (KAU)/Deanship of Scientific Research (DSR), Jeddah, Saudi Arabia via Institutional Fund Projects under grant no. (IFPRP: 693-135-1442). We are also grateful for the efforts from our colleagues in Sino-German Center of Intelligent Systems, Tongji University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Kang or MengChu Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Kang, Q., Zhou, M. et al. A survey of transfer learning for machinery diagnostics and prognostics. Artif Intell Rev 56, 2871–2922 (2023). https://doi.org/10.1007/s10462-022-10230-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-022-10230-4

Keywords

Navigation