Log in

Vascular adaptation to a dysfunctional endothelium as a consequence of Shb deficiency

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Vascular endothelial growth factor (VEGF)-A regulates angiogenesis, vascular morphology and permeability by signaling through its receptor VEGFR-2. The Shb adapter protein has previously been found to relay certain VEGFR-2 dependent signals and consequently vascular physiology and structure was assessed in Shb knockout mice. X-ray computed tomography of vessels larger than 24 μm diameter (micro-CT) after contrast injection revealed an increased frequency of 48–96 μm arterioles in the hindlimb calf muscle in Shb knockout mice. Intravital microscopy of the cremaster muscle demonstrated a less regular vasculature with fewer branch points and increased vessel tortuosity, changes that led to an increased blood flow velocity. Reduced in vivo angiogenesis was observed in Shb knockout Matrigel™ plugs. Unlike the wild-type situation, VEGF-A did not provoke a dissociation of VE-cadherin from adherens junctions in Shb knockout venules. The reduced angiogenesis and altered properties of junctions had consequences for two patho-physiological responses to arterial occlusion: vascular permeability was reduced in the Shb knockout cremaster muscle after ligation of one supplying artery and heat-induced blood flow determined by Laser-Doppler measurements was decreased in the hindlimb after ligation of the femoral artery. Consequently, the Shb knockout mouse exhibited structural and functional (angiogenesis and vascular permeability) vascular abnormalities that have implications for understanding the function of VEGF-A under physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339(6219):58–61. doi:10.1038/339058a0

    Article  PubMed  CAS  Google Scholar 

  2. Weis SM (2008) Vascular permeability in cardiovascular disease and cancer. Curr Opin Hematol 15(3):243–249. doi:10.1097/MOH.0b013e3282f97d86

    Article  PubMed  CAS  Google Scholar 

  3. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371. doi:10.1038/nrm1911

    Article  PubMed  CAS  Google Scholar 

  4. Matsumoto T, Claesson-Welsh L (2001) VEGF receptor signal transduction. Sci STKE 2001 (112):re21. doi:10.1126/stke.2001.112.re21

  5. Praidou A, Androudi S, Brazitikos P, Karakiulakis G, Papakonstantinou E, Dimitrakos S (2010) Angiogenic growth factors and their inhibitors in diabetic retinopathy. Curr Diabetes Rev 6(5):304–312

    Article  PubMed  CAS  Google Scholar 

  6. Bhadada SV, Goyal BR, Patel MM (2011) Angiogenic targets for potential disorders. Fundam Clin Pharmacol 25(1):29–47. doi:10.1111/j.1472-8206.2010.00814.x

    Article  PubMed  CAS  Google Scholar 

  7. Murakami M, Simons M (2008) Fibroblast growth factor regulation of neovascularization. Curr Opin Hematol 15(3):215–220. doi:10.1097/MOH.0b013e3282f97d98

    Article  PubMed  CAS  Google Scholar 

  8. Casey DP, Joyner MJ (2011) Local control of skeletal muscle blood flow during exercise: influence of available oxygen. J Appl Physiol. doi:10.1152/japplphysiol.00895.2011

  9. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87(2):659–797. doi:10.1152/physrev.00043.2006

    Article  PubMed  CAS  Google Scholar 

  10. Liu D, Krueger J, Le Noble F (2011) The role of blood flow and microRNAs in blood vessel development. Int J Dev Biol 55(4–5):419–429. doi:10.1387/ijdb.103220dl

    Article  PubMed  CAS  Google Scholar 

  11. Swift MR, Weinstein BM (2009) Arterial-venous specification during development. Circ Res 104(5):576–588. doi:10.1161/CIRCRESAHA.108.188805

    Article  PubMed  CAS  Google Scholar 

  12. Lanahan AA, Hermans K, Claes F, Kerley-Hamilton JS, Zhuang ZW, Giordano FJ, Carmeliet P, Simons M (2010) VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis. Dev Cell 18(5):713–724. doi:10.1016/j.devcel.2010.02.016

    Article  PubMed  CAS  Google Scholar 

  13. Rolny C, Mazzone M, Tugues S, Laoui D, Johansson I, Coulon C, Squadrito ML, Segura I, Li X, Knevels E, Costa S, Vinckier S, Dresselaer T, Akerud P, De Mol M, Salomaki H, Phillipson M, Wyns S, Larsson E, Buysschaert I, Botling J, Himmelreich U, Van Ginderachter JA, De Palma M, Dewerchin M, Claesson-Welsh L, Carmeliet P (2011) HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19(1):31–44. doi:10.1016/j.ccr.2010.11.009

    Article  PubMed  CAS  Google Scholar 

  14. Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10(6):417–427. doi:10.1038/nrd3455

    Article  PubMed  CAS  Google Scholar 

  15. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611. doi:10.1210/er.2003-002725/4/581

    Article  PubMed  CAS  Google Scholar 

  16. Weis S, Shintani S, Weber A, Kirchmair R, Wood M, Cravens A, McSharry H, Iwakura A, Yoon YS, Himes N, Burstein D, Doukas J, Soll R, Losordo D, Cheresh D (2004) Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. J Clin Invest 113(6):885–894. doi:10.1172/JCI20702

    PubMed  CAS  Google Scholar 

  17. Dejana E, Tournier-Lasserve E, Weinstein BM (2009) The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 16(2):209–221. doi:10.1016/j.devcel.2009.01.004

    Article  PubMed  CAS  Google Scholar 

  18. Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, Balconi G, Spagnuolo R, Oosthuyse B, Dewerchin M, Zanetti A, Angellilo A, Mattot V, Nuyens D, Lutgens E, Clotman F, de Ruiter MC, Gittenberger-de Groot A, Poelmann R, Lupu F, Herbert JM, Collen D, Dejana E (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98(2):147–157

    Article  PubMed  CAS  Google Scholar 

  19. Dvorak HF (2005) Angiogenesis: update 2005. J Thromb Haemost 3(8):1835–1842. doi:10.1111/j.1538-7836.2005.01361.x

    Article  PubMed  CAS  Google Scholar 

  20. Baluk P, Hirata A, Thurston G, Fujiwara T, Neal CR, Michel CC, McDonald DM (1997) Endothelial gaps: time course of formation and closure in inflamed venules of rats. Am J Physiol 272(1 Pt 1):L155–L170

    PubMed  CAS  Google Scholar 

  21. Baffert F, Le T, Thurston G, McDonald DM (2006) Angiopoietin-1 decreases plasma leakage by reducing number and size of endothelial gaps in venules. Am J Physiol Heart Circ Physiol 290(1):H107–H118. doi:10.1152/ajpheart.00542.2005

    Article  PubMed  CAS  Google Scholar 

  22. Holmqvist K, Cross MJ, Rolny C, Hagerkvist R, Rahimi N, Matsumoto T, Claesson-Welsh L, Welsh M (2004) The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J Biol Chem 279(21):22267–22275. doi:10.1074/jbc.M312729200M312729200

    Article  PubMed  CAS  Google Scholar 

  23. Funa NS, Kriz V, Zang G, Calounova G, Akerblom B, Mares J, Larsson E, Sun Y, Betsholtz C, Welsh M (2009) Dysfunctional microvasculature as a consequence of shb gene inactivation causes impaired tumor growth. Cancer Res 69(5):2141–2148. doi:10.1158/0008-5472.CAN-08-3797

    Article  PubMed  CAS  Google Scholar 

  24. Kriz V, Mares J, Wentzel P, Funa NS, Calounova G, Zhang XQ, Forsberg-Nilsson K, Forsberg M, Welsh M (2007) Shb null allele is inherited with a transmission ratio distortion and causes reduced viability in utero. Dev Dyn 236(9):2485–2492. doi:10.1002/dvdy.21257

    Article  PubMed  CAS  Google Scholar 

  25. Zagorchev L, Oses P, Zhuang ZW, Moodie K, Mulligan-Kehoe MJ, Simons M, Couffinhal T (2010) Micro computed tomography for vascular exploration. J Angiogenes Res 2:7. doi:10.1186/2040-2384-2-7

    Article  PubMed  Google Scholar 

  26. Zhuang ZW, Gao L, Murakami M, Pearlman JD, Sackett TJ, Simons M, de Muinck ED (2006) Arteriogenesis: noninvasive quantification with multi-detector row CT angiography and three-dimensional volume rendering in rodents. Radiology 240(3):698–707. doi:10.1148/radiol.2403050976

    Article  PubMed  Google Scholar 

  27. Limbourg A, Korff T, Napp LC, Schaper W, Drexler H, Limbourg FP (2009) Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia. Nat Protoc 4(12):1737–1746. doi:10.1038/nprot.2009.185

    Article  PubMed  CAS  Google Scholar 

  28. Schnoor M, Lai FP, Zarbock A, Klaver R, Polaschegg C, Schulte D, Weich HA, Oelkers JM, Rottner K, Vestweber D (2011) Cortactin deficiency is associated with reduced neutrophil recruitment but increased vascular permeability in vivo. J Exp Med 208(8):1721–1735. doi:10.1084/jem.20101920

    Article  PubMed  CAS  Google Scholar 

  29. Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4(6):915–924

    Article  PubMed  CAS  Google Scholar 

  30. Gavard J, Gutkind JS (2006) VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8(11):1223–1234. doi:10.1038/ncb1486

    Article  PubMed  CAS  Google Scholar 

  31. Mellberg S, Dimberg A, Bahram F, Hayashi M, Rennel E, Ameur A, Westholm JO, Larsson E, Lindahl P, Cross MJ, Claesson-Welsh L (2009) Transcriptional profiling reveals a critical role for tyrosine phosphatase VE-PTP in regulation of VEGFR2 activity and endothelial cell morphogenesis. Faseb J 23(5):1490–1502. doi:10.1096/fj.08-123810

    Article  PubMed  CAS  Google Scholar 

  32. Nottebaum AF, Cagna G, Winderlich M, Gamp AC, Linnepe R, Polaschegg C, Filippova K, Lyck R, Engelhardt B, Kamenyeva O, Bixel MG, Butz S, Vestweber D (2008) VE-PTP maintains the endothelial barrier via plakoglobin and becomes dissociated from VE-cadherin by leukocytes and by VEGF. J Exp Med 205(12):2929–2945. doi:10.1084/jem.20080406

    Article  PubMed  CAS  Google Scholar 

  33. Lampugnani MG, Orsenigo F, Gagliani MC, Tacchetti C, Dejana E (2006) Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J Cell Biol 174(4):593–604. doi:10.1083/jcb.200602080

    Article  PubMed  CAS  Google Scholar 

  34. Gampel A, Moss L, Jones MC, Brunton V, Norman JC, Mellor H (2006) VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment. Blood 108(8):2624–2631. doi:10.1182/blood-2005-12-007484

    Article  PubMed  CAS  Google Scholar 

  35. Cai J, Wu L, Qi X, Shaw L, Li Calzi S, Caballero S, Jiang WG, Vinores SA, Antonetti D, Ahmed A, Grant MB, Boulton ME (2011) Placenta growth factor-1 exerts time-dependent stabilization of adherens junctions following VEGF-induced vascular permeability. PLoS ONE 6(3):e18076. doi:10.1371/journal.pone.0018076

    Article  PubMed  CAS  Google Scholar 

  36. Anneren C, Lindholm CK, Kriz V, Welsh M (2003) The FRK/RAK-SHB signaling cascade: a versatile signal-transduction pathway that regulates cell survival, differentiation and proliferation. Curr Mol Med 3(4):313–324

    Article  PubMed  CAS  Google Scholar 

  37. Bhandarkar SS, Bromberg J, Carrillo C, Selvakumar P, Sharma RK, Perry BN, Govindarajan B, Fried L, Sohn A, Reddy K, Arbiser JL (2008) Tris (dibenzylideneacetone) dipalladium, a N-myristoyltransferase-1 inhibitor, is effective against melanoma growth in vitro and in vivo. Clin Cancer Res 14(18):5743–5748. doi:10.1158/1078-0432.CCR-08-0405

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Marianne Ljungkvist for help with SEM and Ying Gou for help with blood flow measurements. The work was supported by the Swedish Cancer Foundation (100494), the Swedish Research Council (K2011-54X-10822), the Swedish Diabetes Fund and Family Ernfors Fund.

Conflict of interest

The authors declare no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Welsh.

Additional information

Gustaf Christoffersson and Guangxiang Zang have equally contributed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1451 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christoffersson, G., Zang, G., Zhuang, Z.W. et al. Vascular adaptation to a dysfunctional endothelium as a consequence of Shb deficiency. Angiogenesis 15, 469–480 (2012). https://doi.org/10.1007/s10456-012-9275-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9275-z

Keywords

Navigation