Log in

Airborne Cladosporium fungal spores and climate change in France

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Fungal spores are among the most commonly encountered airborne biological particles, and it is widely proved that they represent a potential source of allergens involved in rhinitis and asthma. A change in temperature may influence the colonisation and growth of fungi directly through the physiology of individual organisms, or indirectly through physiological effects on their host plants or substrates and any competitors or enemies. In order to detect and monitor the evolution of the spore counts, air sampling was carried out using standard equipment (Hirst-type volumetric traps) and an identical method in several stations across France. Cladosporium has been here emphasised because of its very large contribution to the total fungal spectrum. Moreover, this taxon is of particular clinical importance because it possesses a high allergenic potential. The data from the oldest traps (Aix-en-Provence, Bordeaux, Lyon, Paris and Toulouse) were analysed on an annual base. Located at different latitudes and in different climatic areas, these five cities showed fundamentally different trends for the concentrations of Cladosporium spores: downward trend at the southernmost locations and upward trend at the other locations, whereas temperature was everywhere continuously rising over the study period. However, longer data sets are needed to be able to draw more definitive conclusions about quantitative trends in airborne fungal spore concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams, K. F. (1964). Year to year variation in the fungus spore content of the atmosphere. Acta Allergologica, 19(1), 11–50. doi:10.1111/j.1398-9995.1964.tb03220.x.

    Article  CAS  Google Scholar 

  • Aira, M. J., Rodríguez-Rajo, F. J., Fernández-González, M., Seijo, C., Elvira-Rendueles, B., Gutiérrez-Bustillo, M., et al. (2012). Cladosporium airborne spore incidence in the environmental quality of the Iberian Peninsula. Grana, 51(4), 293–304. doi:10.1080/00173134.2012.717636.

    Article  Google Scholar 

  • Aira, M. J., Rodríguez-Rajo, F. J., & Jato, V. (2008). 47 annual records of allergenic fungi spore: Predictive models from the NW Iberian Peninsula. Annals of Agricultural and Environmental Medicine, 15(1), 91–98.

    Google Scholar 

  • Aukrust, L. (1979). Crossed radioimmunoelectrophoretic studies of distinct allergens in two extracts of Cladosporium herbarum. International Archives of Allergy and Applied Immunology, 58(4), 375–390. doi:10.1159/000232217.

    Article  CAS  Google Scholar 

  • Bagni, B., Davies, R. R., Mallea, M., Nolard, N., Spieksma, F. T., & Stix, E. (1977). Sporenkonzentrationen in Städten der Europäischen Gemeinschaft (EG). II. Cladosporium- und Alternaria-Sporen. Acta Allergologica, 32(2), 118–138. doi:10.1111/j.1398-9995.1977.tb02617.x.

    Article  CAS  Google Scholar 

  • Barnes, C. S., Alexis, N. E., Bernstein, J. A., Cohn, J. R., Demain, J. G., Horner, E., et al. (2013). Climate change and our environment: The effect on respiratory and allergic disease. Journal of Allergy and Clinical Immunology: In Practice, 1(2), 137–141. doi:10.1016/j.jaip.2012.07.002.

    Article  Google Scholar 

  • Beggs, P. J. (2004). Impacts of climate change on aeroallergens: Past and future. Clinical and Experimental Allergy, 34(10), 1507–1513. doi:10.1111/j.1365-2222.2004.02061.x.

    Article  CAS  Google Scholar 

  • Bensch, K., Braun, U., Groenewald, J. Z., & Crous, P. W. (2012). The genus Cladosporium. Studies in Mycology, 72(1), 1–401. doi:10.3114/sim0003.

    Article  CAS  Google Scholar 

  • Besancenot, J. P., & Thibaudon, M. (2012). Changement climatique et pollinisation. Revue des Maladies Respiratoires, 29(10), 1238–1253. doi:10.1016/j.rmr.2012.07.007.

    Article  Google Scholar 

  • Bousquet, P. J., Chinn, S., Janson, C., Kogevinas, M., Burney, P., & Jarvis, D. (2007). Geographical variation in the prevalence of positive skin tests to environmental aeroallergens in the European Community Respiratory Health Survey I. Allergy, 62(3), 301–309. doi:10.1111/j.1398-9995.2006.01293.x.

    Article  Google Scholar 

  • Cecchi, L., D’Amato, G., Ayres, J. G., Galan, C., Forastiere, F., Forsberg, B., et al. (2010). Projections of the effects of climate change on allergic asthma: The contribution of aerobiology. Allergy, 65(9), 1073–1081. doi:10.1111/j.1398-9995.2010.02423.x.

    CAS  Google Scholar 

  • Corden, J. M., & Millington, W. M. (2001). The long-term trends and seasonal variation of the aeroallergen Alternaria in Derby, UK. Aerobiologia, 17(2), 127–136. doi:10.1023/A:1010876917512.

    Article  Google Scholar 

  • Corden, J. M., Millington, W. M., & Mulllins, J. (2003). Long-term trends and regional variation in the aeroallergen Alternaria in Cardiff and Derby UK—Are differences in climate and cereal production having an effect? Aerobiologia, 19(3), 191–199. doi:10.1023/B:AERO.0000006529.51252.2f.

    Article  Google Scholar 

  • Damialis, A., Halley, J. M., Gioulekas, D., & Vokou, D. (2007). Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmospheric Environment, 41(33), 7011–7021. doi:10.1016/j.atmosenv.2007.05.009.

    Article  CAS  Google Scholar 

  • Damialis, A., Mohammad, A. B., Halley, J. M., & Gange, A. C. (2015a). Fungi in a changing world: Growth rates will be elevated, but spore production may decrease in future climates. International Journal of Biometeorology, 59(9), 1157–1167. doi:10.1007/s00484-014-0927-0.

    Article  Google Scholar 

  • Damialis, A., Vokou, D., Gioulekas, D., & Halley, J. M. (2015b). Long-term trends in airborne fungal-spore concentrations: A comparison with pollen. Fungal Ecology, 13, 150–156. doi:10.1016/j.funeco.2014.09.010.

    Article  Google Scholar 

  • Dugan, F. M., Schubert, K., & Braun, U. (2004). Check-list of Cladosporium names. Schlechtendalia, 11, 1–103.

    Google Scholar 

  • Estienne, P. (1979). La France, I. Généralités, Région du Nord. Paris: Masson.

    Google Scholar 

  • Fukutomi, Y., & Taniguchi, M. (2015). Sensitization to fungal allergens: Resolved and unresolved issues. Allergology International, 64(4), 321–331. doi:10.1016/j.alit.2015.05.007.

    Article  Google Scholar 

  • Gobakken, L. R. (2010). Effects of global climate change on mould growth—Interactions of concern. In 41 st Annual Meeting of the International Research Group on Wood Protection, Biarritz, 9–13 May 2010 (pp. 1–11). Stockholm: IRG Secretariat.

  • Goodman, D. H., Northey, W. T., Leathers, C. R., & Savage, T. H. (1966). A study of airborne fungi in the Phoenix, Arizona, metropolitan area. Journal of Allergy, 38(1), 56–62. doi:10.1016/0021-8707(66)90074-8.

    Article  CAS  Google Scholar 

  • Gravesen, S. (1979). Fungi as a cause of allergic disease. Allergy, 34(3), 135–154. doi:10.1111/j.1398-9995.1979.tb01562.x.

    Article  CAS  Google Scholar 

  • Grinn-Gofroń, A. (2009). The occurrence of Cladosporium spores in the air and their relationships with meteorological parameters. Acta Agrobotanica, 62(2), 111–116. doi:10.5586/aa.2009.032.

    Article  Google Scholar 

  • Grinn-Gofroń, A., & Bosiacka, B. (2015). Effects of meteorological factors on the composition of selected fungal spores in the air. Aerobiologia, 31(1), 63–72. doi:10.1007/s10453-014-9347-1.

    Article  Google Scholar 

  • Grinn-Gofroń, A., & Rapiejko, P. (2009). Occurrence of Cladosporium spp. and Alternaria spp. spores in Western, Northern and Central-Eastern Poland in 2004–2006 and relation to some meteorological factors. Atmospheric Research, 93(4), 747–758. doi:10.1016/j.atmosres.2009.02.014.

    Article  Google Scholar 

  • Grinn-Gofroń, A., & Strzelczak, A. (2008). Artificial neural network models of relationships between Cladosporium spores and meteorological factors in Szczecin (Poland). Grana, 47(4), 305–315. doi:10.1080/00173130802513784.

    Article  Google Scholar 

  • Hamilos, D. L. (2010). Allergic fungal rhinitis and rhinosinusitis. Proceedings of the American Thoracic Society, 7(3), 245–252. doi:10.1513/pats.200909-098AL.

    Article  Google Scholar 

  • Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., & Medina-Elizade, M. (2006). Global temperature change. Proceedings of the National Academy of Sciences, 103(39), 14288–14293. doi:10.1073/pnas.0606291103.

    Article  CAS  Google Scholar 

  • Herrero, B., & Zaldivar, P. (1997). Effects of meteorological factors on the levels of Alternaria and Cladosporium spores in the atmosphere of Palencia, 1990–1992. Grana, 36(3), 180–184. doi:10.1080/00173139709362606.

    Article  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39(2), 257–265. doi:10.1111/j.1744-7348.1952.tb00904.x.

    Article  Google Scholar 

  • Hjelmroos, M. (1993). Relationship between airborne fungal spore presence and weather variables: Cladosporium and Alternaria. Grana, 32(1), 40–47. doi:10.1080/00173139309436418.

    Article  Google Scholar 

  • Ho, H. M., Rao, C. Y., Hsu, H. H., Chiu, Y. H., Liu, C. M., & Chao, H. J. (2005). Characteristics and determinants of ambient fungal spores in Hualien, Taiwan. Atmospheric Environment, 39(32), 5839–5850. doi:10.1016/j.atmosenv.2005.06.034.

    Article  CAS  Google Scholar 

  • Hollins, P. D., Kettlewell, P. S., Atkinson, M. D., Stephenson, D. B., Corden, J. M., Millington, W. M., et al. (2004). Relationships between airborne fungal spore concentration of Cladosporium and the summer climate at two sites in Britain. International Journal of Biometeorology, 48(3), 137–141. doi:10.1007/s00484-003-0188-9.

    Article  CAS  Google Scholar 

  • Hyde, K. D., McKenzie, E. H. C., & KoKo, T. W. (2011). Towards incorporating anamorphic fungi in a natural classification—Checklist and notes for 2010. Mycosphere, 2(1), 1–88.

    Google Scholar 

  • Käpylä, M., & Penttinen, A. (1981). An evaluation of the microscopal counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana, 20(2), 131–141. doi:10.1080/00173138109427653.

    Article  Google Scholar 

  • Kasprzyk, I., Rodinkova, V., Šaulienė, I., Ritenberga, O., Grinn-Gofroń, A., Nowak, M., et al. (2015). Air pollution by allergenic spores of the genus Alternaria in the air of central and eastern Europe. Environmental Science and Pollution Research, 22(12), 9260–9274. doi:10.1007/s11356-014-4070-6.

    Article  CAS  Google Scholar 

  • Katial, R. K., Zhang, Y., Jones, R. H., & Dyer, P. D. (1997). Atmospheric mold spore counts in relation to meteorological parameters. International Journal of Biometeorology, 41(1), 17–22. doi:10.1007/s004840050048.

    Article  CAS  Google Scholar 

  • Kinney, P. L. (2008). Climate change, air quality, and human health. American Journal of Preventive Medicine, 35(5), 459–467. doi:10.1016/j.amepre.2008.08.025.

    Article  Google Scholar 

  • Kurkela, T. (1997). The number of Cladosporium conidia in the air in different weather conditions. Grana, 36(1), 54–61. doi:10.1080/00173139709362591.

    Article  Google Scholar 

  • Lavaud, F., & Dutau, G. (2013). Spores fongiques atmosphériques et allergies respiratoires. Revue Française d’Allergologie et d’Immunologie Clinique, 53(7), 567–568. doi:10.1016/j.reval.2013.10.003.

    Article  Google Scholar 

  • Limpert, E., Burke, J., Galán, C., del Mar Trigo, M., West, J. S., & Stahel, W. A. (2008). Data, not only in aerobiology: How normal is the normal distribution? Aerobiologia, 24(3), 121–124. doi:10.1007/s10453-008-9092-4.

    Article  Google Scholar 

  • Malling, H. J., Dreborg, S., & Weeke, B. (1987). Diagnosis and immunotherapy of mould allergy, part VI. Allergy, 42(4), 305–314. doi:10.1111/j.1398-9995.1987.tb02214.x.

    Article  CAS  Google Scholar 

  • Mitakakis, T. Z., & Guest, D. I. (2001). A fungal spore calendar for the atmosphere of Melbourne, Australia, for the year 1993. Aerobiologia, 17(2), 171–176. doi:10.1023/A:1011028412526.

    Article  Google Scholar 

  • Mitakakis, T. Z., & McGee, P. A. (2000). Reliability of measures of spores of Alternaria and pollen concentrations in air over two towns in rural Australia. Multiple sites for Burkard sampling. Grana, 39(2–3), 141–145. doi:10.1080/001731300300045300.

    Article  Google Scholar 

  • Money, N. P. (2015). Spore production, discharge and dispersal. In S. C. Watkinson, L. Boddy, & N. P. Money (Eds.), The Fungi (3rd ed., pp. 67–97). London: Academic Press.

    Google Scholar 

  • Mullins, J. (2001). Microorganisms in outdoor air. In B. Flannigan, R. A. Samson, & J. D. Miller (Eds.), Microorganisms in home and indoor work environments: Diversity, health impacts, investigation and control (pp. 3–16). London: Taylor & Francis.

    Google Scholar 

  • Newnham, R. M. (1999). Monitoring biogeographical response to climate change: The potential role of aeropalynology. Aerobiologia, 15(2), 87–94. doi:10.1023/A:1007595615115.

    Article  Google Scholar 

  • Nilsson, S., & Persson, S. (1981). Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana, 20(3), 179–182. doi:10.1080/00173138109427661.

    Article  Google Scholar 

  • Nogales, M. T., Galán Soldevilla, C., Ruíz de Clavijo, J. E., & Dominguez Vilches, E. (1985). Variación estacional del contenido de esporas de Cladosporium en la atmósfera de Córdoba. Anales de la Asociación de Palinólogos de Lengua Española, 2, 339–345.

    Google Scholar 

  • O’Connor, D. J., Sadyś, M., Skjøth, C. A., Healy, D. A., Kennedy, R., & Sodeau, J. R. (2014). Atmospheric concentrations of Alternaria, Cladosporium, Ganoderma and Didymella spores monitored in Cork (Ireland) and Worcester (England) during the summer of 2010. Aerobiologia, 30(4), 397–411. doi:10.1007/s10453-014-9337-3.

    Article  Google Scholar 

  • Oliveira, M., Ribeiro, H., Delgado, L., & Abreu, I. (2009). The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanization level. International Journal of Biometeorology, 53(1), 61–73. doi:10.1007/s00484-008-0191-2.

    Article  CAS  Google Scholar 

  • Pidek, I. A., Poska, A., & Kaszewski, B. M. (2015). Taxon-specific pollen deposition dynamics in a temperate forest zone, SE Poland: The impact of physiological rhythmicity and weather controls. Aerobiologia, 31(2), 219–238. doi:10.1007/s10453-014-9359-x.

    Article  Google Scholar 

  • Pringle, A. (2013). Asthma and the diversity of fungal spores in air. PLoS Pathogens, 9(6), e1003371. doi:10.1371/journal.ppat.1003371.

    Article  CAS  Google Scholar 

  • Rapiejko, P., Stanlaewicz, W., Szczygielski, K., & Jurkiewicz, D. (2007). Progowe stężenie pyłku roślin niezbędne do wywołania objawów alergicznych/Threshold pollen count necessary to evoke allergic symptoms. Otolaryngologia Polska, 61(4), 591–594.

    Article  Google Scholar 

  • Recio, M., del Mar Trigo, M., Docampo, S., Melgar, M., García-Sánchez, J., Bootello, L., et al. (2012). Analysis of the predicting variables for daily and weekly fluctuations of two airborne fungal spores: Alternaria and Cladosporium. International Journal of Biometeorology, 56(6), 983–991. doi:10.1007/s00484-011-0509-3.

    Article  Google Scholar 

  • Rodríguez-Rajo, F. J., Iglesias, I., & Jato, V. (2005). Variation assessment of airborne Alternaria and Cladosporium spores at different bioclimatical conditions. Mycological Research, 109(4), 497–507. doi:10.1017/S0953756204001777.

    Article  Google Scholar 

  • Sabariego, S., Díaz de la Guarda, C., & Alba, F. (2000). The effect of meteorological factors on the daily variation of airborne fungal spores in Granada (Southern Spain). International Journal of Biometeorology, 44(1), 1–5. doi:10.1007/s004840050131.

    Article  CAS  Google Scholar 

  • Sadyś, M., Kennedy, R., & West, J. S. (2015a). Potential impact of climate change on fungal distributions: Analysis of 2 years of contrasting weather in the UK. Aerobiologia,. doi:10.1007/s10453-015-9402-6.

    Google Scholar 

  • Sadyś, M., Strzelczak, A., Grinn-Gofroń, A., & Kennedy, R. (2015b). Application of redundancy analysis for aerobiological data. International Journal of Biometeorology, 59(1), 25–36. doi:10.1007/s00484-014-0818-4.

    Article  Google Scholar 

  • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611. doi:10.2307/2333709.

    Article  Google Scholar 

  • Shelton, B. G., Kirkland, K. H., Flanders, W. D., & Morris, G. K. (2002). Profiles of airborne fungi in buildings and outdoor environments in the United States. Applied and Environmental Microbiology, 68(4), 1743–1753. doi:10.1128/AEM.68.4.1743-1753.2002.

    Article  CAS  Google Scholar 

  • Smith, M., Jäger, S., Berger, U., Šikoparija, B., Hallsdottir, M., Sauliene, I., et al. (2014). Geographic and temporal variations in pollen exposure across Europe. Allergy, 69(7), 913–923. doi:10.1111/all.12419.

    Article  CAS  Google Scholar 

  • Spieksma, F. T. M., Corden, J. M., Detandt, M., Millington, W. M., Nikkels, H., Nolard, N., et al. (2003). Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica, and Artemisia), at five pollen-monitoring stations in Western Europe. Aerobiologia, 19(3), 171–184. doi:10.1023/B:AERO.0000006528.37447.15.

    Article  Google Scholar 

  • Stępalska, D., Harmata, K., Kasprzyk, I., Myszkowska, D., & Stach, A. (1999). Occurrence of airborne Cladosporium and Alternaria spores in Southern and Central Poland in 1995–1996. Aerobiologia, 15(1), 39–47. doi:10.1023/A:1007536513836.

    Article  Google Scholar 

  • Stępalska, D., & Wołek, J. (2005). Variation in fungal spore concentrations of selected taxa associated to weather conditions in Cracow, Poland, in 1997. Aerobiologia, 21(1), 43–52. doi:10.1007/s10453-004-5877-2.

    Article  Google Scholar 

  • Thibaudon, M., & Lachasse, C. (2006). Alternaria, Cladosporium: Dispersion atmosphérique, rythmes nycthéméral et saisonnier. Revue Française d’Allergologie et d’Immunologie Clinique, 46(3), 188–196. doi:10.1016/j.allerg.2006.01.025.

    Article  Google Scholar 

  • Ugolotti, M., Pasquarella, C., Vitali, P., Smith, M., & Albertini, R. (2015). Characteristics and trends of selected pollen seasons recorded in Parma (Northern Italy) from 1994 to 2011. Aerobiologia, 31(3), 341–352. doi:10.1007/s10453-015-9368-4.

    Article  Google Scholar 

  • Valencia-Barrera, R. M., Comtois, P., & Fernández-González, D. (2002). Bioclimatic indices as a tool in pollen forecasting. International Journal of Biometeorology, 46(4), 171–175. doi:10.1007/s00484-002-0138-y.

    Article  Google Scholar 

  • Vélez-Pereira, A. M., De Linares, C., Delgado, R., & Belmonte, J. (2015). Temporal trends of the airborne fungal spores in Catalonia (NE Spain), 1995–2013. Aerobiologia. 1–15. doi: 10.1007/s10453-015-9410-6.

  • Ziello, C., Sparks, T. H., Estrella, N., Belmonte, J., Bergmann, K. C., Bucher, E., et al. (2012). Changes to airborne pollen counts across Europe. PLoS One, 7(4), e34076. doi:10.1371/journal.pone.0034076.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Sindt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sindt, C., Besancenot, JP. & Thibaudon, M. Airborne Cladosporium fungal spores and climate change in France. Aerobiologia 32, 53–68 (2016). https://doi.org/10.1007/s10453-016-9422-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-016-9422-x

Keywords

Navigation