Log in

Combined exposure to parasite and pesticide causes increased mortality in the water flea Daphnia

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Organisms are exposed to multiple biotic and abiotic environmental stressors, which can influence the dynamics of individual populations and communities. Populations may also genetically adapt to both natural (e.g. disease) and anthropogenic (e.g. chemical pollution) stress. In the present study, we studied fitness consequences of exposure to both a parasite (i.e. biotic) and a pesticide (i.e. abiotic) for the water flea Daphnia. In addition, we investigated whether these fitness consequences change through time as a population evolves. Thus, we exposed Daphnia magna clones, hatched from dormant eggs isolated from different time layers of a natural dormant egg bank, to the parasite Pasteuria ramosa and the insecticide diazinon in a multifactorial experiment. While our experimental treatments for unknown reasons failed to induce disease symptoms in the Daphnia, we did observe a reduced survival of D. magna when simultaneously exposed to both the parasite and the pesticide. No increased mortality upon exposure to individual stressors was observed. We did not observe an evolutionary change in fitness response of the Daphnia clones hatched from different time horizons upon exposure to stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aggarwal M, Naraharisetti SB, Dandapat S, Degen GH, Malik JK (2008) Perturbations in immune responses induced by concurrent subchronic exposure to arsenic and endosulfan. Toxicology 251:51–60

    Article  PubMed  CAS  Google Scholar 

  • Allen DE, Little TJ (2011) Identifying energy constraints to parasite resistance. J Evol Biol 24:224–229

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ami F, Regoes RR, Ebert D (2008) A quantitative test of the relationship between parasite dose and infection probability across different host-parasite combinations. Proc R Soc B Biol Sci 275:853–859

    Article  Google Scholar 

  • Braune P, Rolff J (2001) Parasitism and survival in a damselfly: does host sex matter? Proc R Soc B Biol Sci 268:1133–1137

    Article  CAS  Google Scholar 

  • Bryner SF, Rigling D (2011) Temperature-dependent genotype-by-genotype interaction between a pathogenic fungus and its hyperparasitic virus. Am Nat 177:65–74

    Article  PubMed  Google Scholar 

  • Cáceres CE (1998) Interspecific variation in the abundance, production, and emergence of Daphnia diapausing eggs. Ecology 79:1699–1710

    Google Scholar 

  • Carvalho GR, Wolf HG (1989) Resting eggs of lake-Daphnia. I. Distribution, abundance and hatching of eggs collected from various depths in lake sediments. Freshw Biol 22:459–470

    Article  Google Scholar 

  • Chambers HW (1992) Organophosphorus compounds: an overview. In: Chambers JE, Levi PE (eds) Organophosphates. Chemistry, fate, and effects. Academic Press, San Diego

  • Chu FLE, Hale RC (1994) Relationship between pollution and susceptibility to infectious-disease in the Eastern Oyster, Crassostrea-Virginica. Mar Environ Res 38:243–256

    Article  CAS  Google Scholar 

  • Coors A, De Meester L (2008) Synergistic, antagonistic and additive effects of multiple stressors: predation threat, parasitism and pesticide exposure in Daphnia magna. J Appl Ecol 45:1820–1828

    Article  Google Scholar 

  • Coors A, De Meester L (2011) Fitness and virulence of a bacterial endoparasite in an environmentally stressed crustacean host. Parasitology 138:122–131

    Article  PubMed  CAS  Google Scholar 

  • Coors A, Decaestecker E, Jansen M, De Meester L (2008) Pesticide exposure strongly enhances parasite virulence in an invertebrate host model. Oikos 117:1840–1846

    Article  Google Scholar 

  • Coors A, Vanoverbeke J, De Bie T, De Meester L (2009) Land use, genetic diversity and toxicant tolerance in natural populations of Daphnia magna. Aquat Toxicol 95:71–79

    Article  PubMed  CAS  Google Scholar 

  • Cousyn C, De Meester L, Colbourne JK, Brendonck L, Verschuren D, Volckaert F (2001) Rapid local adaptation of zooplankton behavior to changes in predation pressure in absence of neutral genetic changes. Proc Natl Acad Sci USA 98:6256–6260

    Article  PubMed  CAS  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2000) Wildlife ecology—Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287:443–449

    Google Scholar 

  • De Meester L, Mergeay J, Michels H, Decaestecker E (2007) Reconstructing microevolutionary dynamics from layered egg banks. In: Alekseev V, De Stasio B, Gilbert J (eds) Diapause in aquatic invertebrates theory and human use. Springer, pp 159–166

  • Decaestecker E, Lefever C, De Meester L, Ebert D (2004) Haunted by the past: evidence for dormant stage banks of microparasites and epibionts of Daphnia. Limnol Oceanogr 49:1355–1364

    Article  Google Scholar 

  • Decaestecker E, Gaba S, Raeymaekers JAM, Stoks R, Van Kerckhoven L, Ebert D, De Meester L (2007) Host–parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450:870–873

    Article  PubMed  CAS  Google Scholar 

  • Ebert D (2005) Ecology, epidemiology, and evolution of parasitism in Daphnia. National Library of Medicine (US), National Center for Biotechnology Information, Bethesda

  • Ebert D, Rainey P, Embley TM, Scholz D (1996) Development, life cycle, ultrastructure and phylogenetic position of Pasteuria ramosa metchnikoff 1888: rediscovery of an obligate endoparasite of Daphnia magna Straus. Philos Trans R Soc 351:1689–1701

    Google Scholar 

  • Galloway T, Handy R (2003) Immunotoxicity of organophosphorous pesticides. Ecotoxicology 12:345–363

    Article  PubMed  CAS  Google Scholar 

  • Gendron AD, Marcogliese DJ, Barbeau S, Christin MS, Brousseau P, Ruby S, Cyr D, Fournier M (2003) Exposure of leopard frogs to a pesticide mixture affects life history characteristics of the lungworm Rhabdias ranae. Oecologia 135:469–476

    PubMed  CAS  Google Scholar 

  • Hairston NG Jr, Lampert W, Caceres CE, Holtmeier CL, Weider LJ, Gaedke U, Fischer JM, Fox JA, Post DM (1999) Lake ecosystems: rapid evolution revealed by dormant eggs. Nature 401:446

    Article  Google Scholar 

  • Hairston NG, Holtmeier CL, Lampert W, Weider LJ, Post DM, Fischer JM, Caceres CE, Fox JA, Gaedke U (2001) Natural selection for grazer resistance to toxic cyanobacteria: evolution of phenotypic plasticity? Evolution 55:2203–2214

    Article  PubMed  Google Scholar 

  • Holmstrup M, Bindesbol AM, Oostingh GJ, Duschl A, Scheil V, Kohler HR, Loureiro S, Soares A, Ferreira ALG, Kienle C, Gerhardt A, Laskowski R, Kramarz PE, Bayley M, Svendsen C, Spurgeon DJ (2010) Interactions between effects of environmental chemicals and natural stressors: a review. Sci Total Environ 408:3746–3762

    Article  PubMed  CAS  Google Scholar 

  • Jansen M, Stoks R, Decaestecker E, Coors A, Van de Meutter F, De Meester L (2010) Local exposure shapes spatial patterns in infectivity and community structure of Daphnia parasites. J Anim Ecol 79:1023–1033

    Article  PubMed  Google Scholar 

  • Jansen M, Stoks R, Coors A, van Doorslaer W, de Meester L (2011) Collateral damage: rapid exposure-induced evolution of pesticide resistance leads to increased susceptibility to parasites. Evolution 65:2681–2691

    Article  PubMed  Google Scholar 

  • Jeppesen E, Leavitt P, De Meester L, Jensen JP (2001) Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. Trends Ecol Evol 16:191–198

    Article  PubMed  Google Scholar 

  • Jokela J, Taskinen J, Mutikainen P, Kopp K (2005) Virulence of parasites in hosts under environmental stress: experiments with anoxia and starvation. Oikos 108:156–164

    Article  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Article  Google Scholar 

  • Kerfoot WC, Weider LJ (2004) Experimental paleoecology (resurrection ecology): chasing Van Valen’s Red Queen hypothesis. Limnol Oceanogr 49:1300–1316

    Article  Google Scholar 

  • Kerfoot WC, Robbins JA, Weider LJ (1999) A new approach to historical reconstruction: combining descriptive and experimental paleolimnology. Limnol Oceanogr 44:1232–1247

    Article  Google Scholar 

  • King KC, McLaughlin JD, Boily M, Marcogliese DJ (2010) Effects of agricultural landscape and pesticides on parasitism in native bullfrogs. Biol Conserv 143:302–310

    Article  Google Scholar 

  • Klüttgen B, Dulmer U, Engels M, Ratte HT (1994) Adam, an artificial freshwater for the culture of zooplankton. Water Res 28:743–746

    Article  Google Scholar 

  • Konstantinou IK, Hela DG, Albanis TA (2006) The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environ Pollut 141:555–570

    Article  PubMed  CAS  Google Scholar 

  • Kretschmann A, Ashauer R, Preuss TG, Spaak P, Escher BI, Hollender J (2011) Toxicokinetic model describing bioconcentration and biotransformation of diazinon in Daphnia magna. Environ Sci Technol 45:4995–5002

    Article  PubMed  CAS  Google Scholar 

  • Kreutz LC, Barcellos LJG, Marteninghe A, dos Santos ED, Zanatta R (2010) Exposure to sublethal concentration of glyphosate or atrazine-based herbicides alters the phagocytic function and increases the susceptibility of silver catfish fingerlings (Rhamdia quelen) to Aeromonas hydrophila challenge. Fish Shellfish Immunol 29:694–697

    Article  PubMed  CAS  Google Scholar 

  • Krist AC, Jokela J, Wiehn J, Lively CM (2004) Effects of host condition on susceptibility to infection, parasite developmental rate, and parasite transmission in a snail-trematode interaction. J Evol Biol 17:33–40

    Article  PubMed  CAS  Google Scholar 

  • Labbe P, Vale P, Little T (2010) Successfully resisting a pathogen is rarely costly in Daphnia magna. BMC Evol Biol 10:355

    Article  PubMed  Google Scholar 

  • Lindström KM, Foufopoulos J, Pärn H, Wikelski M (2004) Immunological investments reflect parasite abundance in island populations of Darwin’s finches. Proc R Soc B Biol Sci 271:1513–1519

    Article  Google Scholar 

  • Little T, Killick SC (2007) Evidence for a cost of immunity when the crustacean Daphnia magna is exposed to the bacterial pathogen Pasteuria ramosa. Ecology 76:1202–1207

    Google Scholar 

  • Marcogliese DJ, Pietrock M (2011) Combined effects of parasites and contaminants on animal health: parasites do matter. Trends Parasitol 27:123–130

    Article  PubMed  Google Scholar 

  • Maxwell DM, Brecht KM, Koplovitz I, Sweeney RE (2006) Acetylcholinesterase inhibition: does it explain the toxicity of organophosphorus compounds? Arch Toxicol 80:756–760

    Article  PubMed  CAS  Google Scholar 

  • McDowell JE, Lancaster BA, Leavitt DF, Rantamaki P, Ripley B (1999) The effects of lipophilic organic contaminants on reproductive physiology and disease processes in marine bivalve molluscs. Limnol Oceanogr 44:903–909

    Article  CAS  Google Scholar 

  • Metchnikoff E (1888) Pasteuria ramosa un representant des bacteries à division longitudinale. Ann I Pasteur Paris 4:165–170

    Google Scholar 

  • Norris K, Evans MR (2000) Ecological immunology: life history trade-offs and immune defense in birds. Behav Ecol 11:19–26

    Article  Google Scholar 

  • Oostingh GJ, Wichmann G, Schmittner M, Lehmann I, Duschl A (2009) The cytotoxic effects of the organophosphates chlorpyrifos and diazinon differ from their immunomodulating effects. J Immunotoxicol 6:136–145

    Article  PubMed  CAS  Google Scholar 

  • Pauwels K, De Meester L, Put S, Decaestecker E, Stoks R (2010) Rapid evolution of phenoloxidase expression, a component of innate immune function, in a natural population of Daphnia magna. Limnol Oceanogr 55:1408–1413

    Article  CAS  Google Scholar 

  • Relyea RA (2003) Predator cues and pesticides: a double dose of danger for amphibians. Ecol Appl 13:1515–1521

    Article  Google Scholar 

  • Rohr JR, Raffel TR, Sessions SK, Hudson PJ (2008) Understanding the net effects of pesticides on amphibian trematode infections. Ecol Appl 18:1743–1753

    Article  PubMed  Google Scholar 

  • Sanchez M, Ferrando MD, Sancho E, Andreu-Molinar E (1998) Evaluation of a Daphnia magna renewal life-cycle test method with diazinon. J Environ Sci Health Part B Pestic Food Contam Agric Wastes 33:785–797

    Google Scholar 

  • Schmid-Hempel P, Ebert D (2003) On the evolutionary ecology of specific immune defence. Trends Ecol Evol 18:27–32

    Article  Google Scholar 

  • Schoebel CN, Wolinska J, Spaak P (2010) Higher parasite resistance in Daphnia populations with recent epidemics. J Evol Biol 23:2370–2376

    Article  PubMed  CAS  Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    Article  PubMed  CAS  Google Scholar 

  • Sih A, Bell AM, Kerby JL (2004) Two stressors are far deadlier than one. Trends Ecol Evol 19:274–276

    Article  PubMed  Google Scholar 

  • Singer H, Jaus S, Hanke I, Luck A, Hollender J, Alder AC (2010) Determination of biocides and pesticides by on-line solid phase extraction coupled with mass spectrometry and their behaviour in wastewater and surface water. Environ Pollut 158:3054–3064

    Article  PubMed  CAS  Google Scholar 

  • Van Doorslaer W, Stoks R, Duvivier C, Bednarska A, De Meester L, Travisano M (2009) Population dynamics determine genetic adaptation to temperature in Daphnia. Evolution 63:1867–1878

    Article  PubMed  Google Scholar 

  • Wittmer IK, Bader HP, Scheidegger R, Singer H, Luck A, Hanke I, Carlsson C, Stamm C (2010) Significance of urban and agricultural land use for biocide and pesticide dynamics in surface waters. Water Res 44:2850–2862

    Article  PubMed  CAS  Google Scholar 

  • Yin M, Laforsch C, Lohr JN, Wolinska J (2011) Predator-induced defence makes Daphnia more vulnerable to parasites. Evolution 65:1482–1488

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ellen Decaestecker for providing the hatchlings, several members of the Luc De Meester’s group for their help during the experiment and Andreas Kretschmann for hel** verifying the diazinon concentration. The manuscript improved by comments from Andreas Bruder, Christoph Tellenbach, Mat Seymour and two anonymous reviewers. This research was funded by the ETH Board (CCES-GEDIHAP), a Mobility Support from Eawag for CB and the KU Leuven Research Fund project PF/2010/07. MJ received a fellowship of the IWT, Flanders, while KP is a postdoctoral researcher with the FWO, Flanders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia C. Buser.

Additional information

Handling Editor: Thomas Mehner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buser, C.C., Jansen, M., Pauwels, K. et al. Combined exposure to parasite and pesticide causes increased mortality in the water flea Daphnia . Aquat Ecol 46, 261–268 (2012). https://doi.org/10.1007/s10452-012-9397-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-012-9397-9

Keywords

Navigation