Log in

Adsorption of organic solvent vapours on carbon nanotubes, few-layer graphene nanoflakes and their nitrogen-doped counterparts

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

This work studies the influence of nitrogen do** of carbon nanotubes (CNTs) and few-layer graphene nanoflakes (GNFs) on the adsorption of organic solvent vapours. The synthesized materials (CNTs, GNFs and N-doped counterparts) were thoroughly characterized by simultaneous thermal analysis, low temperature nitrogen physisorption and X-Ray photoelectron spectroscopy. The basic regularities of the adsorption of organic solvent vapours were studied using acetone, ethyl acetate, acetic acid and toluene. The dependence of the maximum adsorption capacity of CNTs, GNFs and N-doped counterparts on the dipole moment of adsorbate was investigated. The dependencies of the isosteric heat of adsorption on the degree of surface coverage for various pairs of adsorbate-adsorbent were obtained and the average values of the heat of adsorption were calculated. It was found that introduction of nitrogen into the structure of CNTs and GNFs significantly increases the heat of acetic acid vapour adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang, C., Miao, G., Pi, Y., et al.: Abatement of various types of VOCs by adsorption/catalytic oxidation: a review. Chem. Eng. J. 370, 1128–1153 (2019). https://doi.org/10.1016/j.cej.2019.03.232

    Article  CAS  Google Scholar 

  2. Zhang, X., Gao, B., Creamer, A.E., et al.: Adsorption of VOCs onto engineered carbon materials: a review. J. Hazard. Mater. 338, 102–123 (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  3. Agnihotri, S., Rood, M.J., Rostam-Abadi, M.: Adsorption equilibrium of organic vapors in single-walled carbon nanotubes. Carbon 43, 2379–2388 (2005). https://doi.org/10.1016/j.carbon.2005.04.020

    Article  CAS  Google Scholar 

  4. Apul, O.G., Karanfil, T.: Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review. Water Res. 68, 34–55 (2015). https://doi.org/10.1016/j.watres.2014.09.032

    Article  CAS  PubMed  Google Scholar 

  5. Chafik, T., Darir, A., Achak, O., et al.: Determination of the heat effects involved during toluene vapor adsorption and desorption from microporous activated carbon. C. R. Chim. 15, 474–481 (2012). https://doi.org/10.1016/j.crci.2012.04.001

    Article  CAS  Google Scholar 

  6. Díaz, E., Ordóñez, S., Vega, A.: Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites. J. Colloid Interf. Sci. 305, 7–16 (2007). https://doi.org/10.1016/j.jcis.2006.09.036

    Article  CAS  Google Scholar 

  7. Ersan, G., Apul, O.G., Perreault, F., et al.: Adsorption of organic contaminants by graphene nanosheets: a review. Water Res. 126, 385–398 (2017). https://doi.org/10.1016/j.watres.2017.08.010

    Article  CAS  PubMed  Google Scholar 

  8. Pan, B., **ng, B.: Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 42(24), 9005–9013 (2008). https://doi.org/10.1021/es801777n

    Article  CAS  PubMed  Google Scholar 

  9. Ren, X., Chen, C., Nagatsu, M., et al.: Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem. Eng. J. 170(2–3), 395–410 (2011). https://doi.org/10.1016/j.cej.2010.08.045

    Article  CAS  Google Scholar 

  10. Saha, D., Mirando, N., Levchenko, A.: Liquid and vapor phase adsorption of BTX in lignin derived carbon: equilibrium and kinetics study. J. Clean. Prod. 182, 372–378 (2018). https://doi.org/10.1016/j.jclepro.2018.02.076

    Article  CAS  Google Scholar 

  11. Shih, Y., Li, M.: Adsorption of selected volatile organic vapors on multiwall carbon nanotubes. J. Hazard. Mater. 154(1–3), 21–28 (2008). https://doi.org/10.1016/j.jhazmat.2007.09.095

    Article  CAS  PubMed  Google Scholar 

  12. Gao, J., Li, L., Zeng, Z., et al.: Superior acetone uptake of hierarchically N-doped potassium citrate-based porous carbon prepared by one-step carbonization. J. Mater. Sci. 54(8), 6186–6198 (2019). https://doi.org/10.1007/s10853-018-03300-y

    Article  CAS  Google Scholar 

  13. Ma, X., Li, L., Zeng, Z., et al.: Synthesis of nitrogen-rich nanoporous carbon materials with C\(_3\)N-type from ZIF-8 for methanol adsorption. Chem. Eng. J. 363, 49–56 (2019). https://doi.org/10.1016/j.cej.2019.01.132

    Article  CAS  Google Scholar 

  14. Su, C., Liu, K., Zhu, J., et al.: Adsorption effect of nitrogen, sulfur or phosphorous surface functional group on formaldehyde at ambient temperature: experiments associated with calculations. Chem. Eng. J. 393, 124729 (2020). https://doi.org/10.1016/j.cej.2020.124729

    Article  CAS  Google Scholar 

  15. Yu, Z., Wang, X., Zhou, S., et al.: A facile soft-template synthesis of nitrogen doped mesoporous carbons for hydrogen sulfide removal. Adsorption 22, 1075–1082 (2016). https://doi.org/10.1007/s10450-016-9823-8

    Article  CAS  Google Scholar 

  16. Gregg, S.J., Sing, K.S.W.: Adsorption, Surface Area and Porosity, 2nd edn. Academic Press (1982)

    Google Scholar 

  17. Kel’tsev, N.V.: Osnovy adsorbtsionnoi tekhniki (Foundations of adsorption technique), 2-nd ed. Khimiya (1984)

  18. Narin, G.: Acetic acid removal from dilute aqueous solutions using zeolite 13X. J. of the Turk. Chem. Soc. Sect. B: Chem. Eng. 1(2), 159–190 (2017)

    Google Scholar 

  19. Minkin, V.I., Osipov, O.A., Zhdanov, Yu.A.: Dipole moments in organic chemistry. Translated from Russian by B.J. Hazzard. Translation edited by W.E. Vaughan. Plenum Press, New York (1970)

  20. Moskvin, A.V.: Dipole moments of some substances. http://chemanalytica.com/book/novyy_spravochnik_khimika_i_tekhnologa/12_obshchie_svedeniya/6106 (2021). Accessed 30 March 2021

  21. Díaz-Florez, P.E., Arcibar-Orozco, J.A., Perez-Aguilar, N.V., et al.: Adsorption of organic compounds onto multiwall and nitrogen-doped carbon nanotubes: insights into the adsorption mechanisms. Water Air Soil Pollut. 228(4), 133 (2017). https://doi.org/10.1007/s11270-017-3314-8

    Article  CAS  Google Scholar 

  22. Patiño, Y., Díaz, E., Ordóñez, S., et al.: Adsorption of emerging pollutants on functionalized multiwall carbon nanotubes. Chemosphere 136, 174–180 (2015). https://doi.org/10.1016/j.chemosphere.2015.04.089

    Article  CAS  PubMed  Google Scholar 

  23. **ao, P., Wang, P., Li, H., et al.: New insights into bisphenols removal by nitrogen-rich nanocarbons: synergistic effect between adsorption and oxidative degradation. J. Hazard. Mater. 345, 123–130 (2018). https://doi.org/10.1016/j.jhazmat.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  24. Savilov, S.V., Strokova, N.E., Ivanov, A.S., et al.: Nanoscale carbon materials from hydrocarbons pyrolysis: structure, chemical behavior, utilization for non-aqueous supercapacitors. Mater. Res. Bull. 69, 13–19 (2015). https://doi.org/10.1016/j.materresbull.2015.01.001

    Article  CAS  Google Scholar 

  25. El Oufir, Z., Ramézani, H., Mathieu, N., et al.: Impact of high adsorbent conductivity on adsorption of polar molecules: simulation of phenol adsorption on graphene sheets. Adsorption 26, 537–552 (2020). https://doi.org/10.1007/s10450-020-00227-2

    Article  CAS  Google Scholar 

  26. Podyacheva, OYu., Ismagilov, Z.R.: Nitrogen-doped carbon nanomaterials: to the mechanism of growth, electrical conductivity and application in catalysis. Catal. Today 249, 12–22 (2015). https://doi.org/10.1016/j.cattod.2014.10.033

    Article  CAS  Google Scholar 

  27. Arrigo, R., Hävecker, M., Wrabetz, S., et al.: Tuning the acid/base properties of nanocarbons by functionalization via amination. J. Am. Chem. Soc. 132(28), 9616–9630 (2010). https://doi.org/10.1021/ja910169v

    Article  CAS  PubMed  Google Scholar 

  28. Kondo, T., Casolo, S., Suzuki, T., et al.: Atomic-scale characterization of nitrogen-doped graphite: effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms. Phys. Rev. B 86(3), 035436 (2012). https://doi.org/10.1103/PhysRevB.86.035436

    Article  CAS  Google Scholar 

  29. Li, B., Sun, X.Y., Su, D.: Calibration of basic strength of the nitrogen groups on the nanostructured carbon materials. Phys. Chem. Chem. Phys. 17(10), 6691–6694 (2015). https://doi.org/10.1039/C4CP05765A

    Article  CAS  PubMed  Google Scholar 

  30. Guo, D., Shibuya, R., Akiba, C., et al.: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271), 361–365 (2016). https://doi.org/10.1126/science.aad0832

    Article  CAS  PubMed  Google Scholar 

  31. Do, D.D., Nicholson, D., Do, H.D.: On the anatomy of the adsorption heat versus loading as a function of temperature and adsorbate for a graphitic surface. J. Colloid Interf. Sci. 325, 7–22 (2008). https://doi.org/10.1016/j.jcis.2008.05.027

    Article  CAS  Google Scholar 

  32. Horikawa, T., Zeng, Y., Do, D.D., et al.: On the isosteric heat of adsorption of non-polar and polar fluids on highly graphitized carbon black. J. Colloid Interf. Sci. 439, 1–6 (2015). https://doi.org/10.1016/j.jcis.2014.10.024

    Article  CAS  Google Scholar 

  33. Arkhipova, E.A., Ivanov, A.S., Strokova, N.E., et al.: Structural evolution of nitrogen-doped carbon nanotubes: from synthesis and oxidation to thermal defunctionalization. Carbon 125, 20–31 (2017). https://doi.org/10.1016/j.carbon.2017.09.013

    Article  CAS  Google Scholar 

  34. Chernyak, S.A., Podgornova, A.M., Arkhipova, E.A., et al.: Jellyfish-like few-layer graphene nanoflakes: synthesis, oxidation and hydrothermal N-do**. Appl. Surf. Sci. 439, 371–373 (2018). https://doi.org/10.1016/j.apsusc.2018.01.059

    Article  CAS  Google Scholar 

  35. Savilov, S.V., Arkhipova, E.A., Ivanov, A.S., et al.: Pyrolytic synthesis and characterization of N-doped carbon nanoflakes for electrochemical applications. Mater. Res. Bull. 69, 7–12 (2015). https://doi.org/10.1016/j.materresbull.2014.12.057

    Article  CAS  Google Scholar 

  36. Perry, R.H., Green, D.W., Maloney, J.O.: Perry’s Chemical Engineers Handbook, 7th edn. McGraw Hill, New York (1999)

  37. Biddinger, E.J., Von Deak, D., Ozkan, U.S.: Nitrogen-containing carbon nanostructures as oxygen-reduction catalysts. Top. Catal. 52(11), 1566–1574 (2009). https://doi.org/10.1007/s11244-009-9289-y

    Article  CAS  Google Scholar 

  38. Nxumalo, E.N., Coville, N.J.: Nitrogen doped carbon nanotubes from organometallic compounds: a review. Materials 3(3), 2141–2171 (2010). https://doi.org/10.3390/ma3032141

    Article  CAS  PubMed Central  Google Scholar 

  39. Arkhipova, E.A., Ivanov, A.S., Savilov, S.V., et al.: Effect of nitrogen do** of graphene nanoflakes on their efficiency in supercapacitor applications. Funct. Mater. Lett. 11(6), 184005 (2018). https://doi.org/10.1142/S1793604718400052

    Article  CAS  Google Scholar 

  40. Tian, Y.H., Huang, J., Sheng, X., et al.: Nitrogen do** enables covalent-like \(\pi\)-\(\pi\) bonding between graphenes. Nano Lett. 15, 5482–5491 (2015). https://doi.org/10.1021/acs.nanolett.5b01940

    Article  CAS  PubMed  Google Scholar 

  41. Chernyak, S.A., Ivanov, A.S., Stolbov, D.N., et al.: N-do** and oxidation of carbon nanotubes and jellyfish-like graphene nanoflakes through the prism of Raman spectroscopy. Appl. Surf. Sci. 488, 51–60 (2019). https://doi.org/10.1016/j.apsusc.2019.05.243

    Article  CAS  Google Scholar 

  42. Thommes, M., Kaneko, K., Neimark, N.V., et al.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015)

    Article  CAS  Google Scholar 

  43. Ruthven, D.M.: Principles of adsorption and adsorption processes, pp. 168–170. John Wiley & Sons (1984)

    Google Scholar 

Download references

Acknowledgements

This work was funded by RFBR according to the research Project No 18-33-00322. The authors acknowledge support from “Nanochemistry and Nanomaterials” Equipment Center under Lomonosov Moscow State University Program of Development. The authors thank Dr. K.I. Maslakov for XPS study and fruitful discussion, Ms. Yu.A. Tambovtseva for help in the synthesis of carbon nanomaterials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stepan Yu. Kupreenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4350 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupreenko, S.Y., Strokova, N.E., Il’gova, E.A. et al. Adsorption of organic solvent vapours on carbon nanotubes, few-layer graphene nanoflakes and their nitrogen-doped counterparts. Adsorption 28, 55–66 (2022). https://doi.org/10.1007/s10450-021-00349-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-021-00349-1

Keywords

Navigation