Log in

Stability of Delta Shock Solution for the Simplified Magnetohydrodynamics Equations Under the Linear Flux-Function Perturbation

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

The stability of delta shock solution for the simplified magnetohydrodynamics equations is investigated carefully under the linear flux-function perturbation. Five different structures of Riemann solutions for our perturbed equations are solved in completely explicit situations. By analyzing all the arisen circumstances carefully, we prove rigorously that the limits of Riemann solutions for our perturbed equations are in well agreement with those for the original ones as the perturbation parameter vanishes. In particular, the formation of delta shock wave is well observed in the ultimate limiting state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hayes, B.T., LeFloch, P.G.: Measure solutions to a strictly hyperbolic system of conservation laws. Nonlinearity 9, 1547–1563 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Nedeljkov, M., Oberguggenberger, M.: Interactions of delta shock waves in a strictly hyperbolic system of conservation laws. J. Math. Anal. Appl. 344, 1143–1157 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Sen, A., Raja Sekhar, T.: Delta shock wave as self-similar viscosity limit for a strictly hyperbolic system of conservation laws. J. Math. Phys. 60, 051510 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biro, M.: Admissibility conditions for weak solutions of nonstrictly hyperbolic systems. In: Proc. Int. Conf. on Hyperbolic Problems. Springer Lecture Notes in Mathematics, Berlin, pp. 43–50 (1988)

    Google Scholar 

  5. Kalisch, H., Mitrovic, D.: Singular solutions of a fully nonlinear \(2\times 2\) system of conservation laws. Proc. Edinb. Math. Soc. 55, 711–729 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kalisch, H., Mitrovic, D., Teyekpiti, V.: Existence and uniqueness of singular solutions for a conservation law arising in magnetohydrodynamics. Nonlinearity 31, 5463–5483 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sarrico, C.O.R.: The Riemann problem for the Brio system: a solution containing a Dirac mass obtained via a distributional product. Russ. J. Math. Phys. 22, 518–527 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sarrico, C.O.R.: The Brio system with initial conditions involving Dirac masses: a result afforded by a distributional product. Chin. Ann. Math., Ser. B 35, 941–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Smith, T.A., Petty, D.J., Pantano, C.: A Roe-like numerical method for weakly hyperbolic systems of equations in conservation and non-conservation form. J. Comput. Phys. 316, 117–138 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Shao, Z.: Delta shocks and vacuum states for the isentropic magnetogasdynamics equations for Chaplygin gas as pressure and magnetic field vanish. Anal. Math. Phys. 12, 85 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, G.Q., Liu, H.: Formation of \(\delta \)-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM J. Math. Anal. 34, 923–938 (2003)

    Article  MathSciNet  Google Scholar 

  12. Mitrovic, D., Nedeljkov, M.: Delta-shock waves as a limit of shock waves. J. Hyperbolic Differ. Equ. 4, 629–653 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shen, C., Sun, M.: Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw-Rascle model. J. Differ. Equ. 249, 3024–3051 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sun, M.: Concentration and cavitation phenomena of Riemann solutions for the isentropic Euler system with the logarithmic equation of state. Nonlinear Anal., Real World Appl. 53, 103068 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sheng, W., Wang, G., Yin, G.: Delta wave and vacuum state for generalized Chaplygin gas dynamics system as pressure vanishes. Nonlinear Anal., Real World Appl. 22, 115–128 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo, L., Li, T., Yin, G.: The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term. Commun. Pure Appl. Anal. 16, 295–309 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, L., Li, T., Yin, G.: The transition of Riemann solutions of the modified Chaplygin gas equations with friction to the solutions of the Chaplygin gas equations. Z. Angew. Math. Mech. 102, e201800064 (2022)

    Article  MathSciNet  Google Scholar 

  18. Yang, H., Liu, J.: Delta-shocks and vacuums in zero-pressure gas dynamics by the flux approximation. Sci. China Math. 58, 2329–2346 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang, H., Zhang, Y.: Pressure and flux-approximation to the isentropic relativistic Euler equations for the modified Chaplygin gas. J. Math. Phys. 60, 071502 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, Y., Yang, H.: Flux-approximation limits of solutions to the relativistic Euler equations for polytropic gas. J. Math. Anal. Appl. 435, 1160–1182 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun, M.: Structural stability of solutions to the Riemann problem for a non-strictly hyperbolic system with flux approximation. Electron. J. Differ. Equ. 2016, 126 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Sun, M.: The limits of Riemann solutions to the simplified pressureless Euler system with flux approximation. Math. Methods Appl. Sci. 41, 4528–4548 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sen, A., Raja Sekhar, T.: Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation. Commun. Pure Appl. Anal. 18, 931–942 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sen, A., Raja Sekhar, T., Zeidan, D.: Stability of the Riemann solution for a \(2\times 2\) strictly hyperbolic system of conservation laws. Sadhana 44, 228 (2019)

    Article  Google Scholar 

  25. Ibrahim, M., Liu, F., Liu, S.: Concentration of mass in the pressureless limit of Euler equations for power law. Nonlinear Anal., Real World Appl. 47, 224–235 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sheng, S., Shao, Z.: The vanishing adiabatic exponent limits of Riemann solutions to the isentropic Euler equations for power law with a Coulomb-like friction term. J. Math. Phys. 60, 101504 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sheng, S., Shao, Z.: Concentration of mass in the pressureless limit of the Euler equations of one-dimensional compressible fluid flow. Nonlinear Anal., Real World Appl. 52, 103039 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shen, C., Sun, M.: Exact Riemann solutions for the drift-flux equations of two-phase flow under gravity. J. Differ. Equ. 314, 1–55 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, Y., Zhang, Y., Wang, J.: Concentration in the zero-exponent limit of solutions to the isentropic Euler equations for extended Chaplygin gas. Asymptot. Anal. 122, 1–33 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Sheng, W., Zhang, T.: The Riemann problem for the transportation equations in gas dynamics. Mem. Am. Math. Soc. 137(N654), 1–77 (1999). AMS:Providence

    MathSciNet  MATH  Google Scholar 

  31. Danilov, V.G., Shelkovich, V.M.: Dynamics of propagation and interaction of \(\delta \)-shock waves in conservation law systems. J. Differ. Equ. 211, 333–381 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nilsson, B., Shelkovich, V.M.: Mass, momentum and energy conservation laws in zero-pressure gas dynamics and delta-shocks. Appl. Anal. 90, 1677–1689 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is partially supported by Natural Science Foundation of Shandong Province (ZR2019MA058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Shen.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Shen, C. Stability of Delta Shock Solution for the Simplified Magnetohydrodynamics Equations Under the Linear Flux-Function Perturbation. Acta Appl Math 183, 1 (2023). https://doi.org/10.1007/s10440-022-00548-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-022-00548-0

Keywords

Mathematics Subject Classification (2010)

Navigation